Protecting Workers in Enclosed Cabs from Silica Exposure: Leveraging Research from the Mining Industry

October 18, 2017
Respirable Crystalline Silica Standards

• Published March 25, 2016
• Effective dates:
 – Construction – Sept 23, 2017
 – General Industry – June 23, 2018
1926.1153 Respirable Crystalline Silica
- Construction

(a) Scope
(b) Definitions
(c) Specified exposure control methods (Table 1) - OR -
(d) Alternative exposure control methods (PEL)
e) Respiratory protection
(f) Housekeeping
(g) Written exposure control plan
(h) Medical surveillance
(i) Communication of silica hazards
(j) Recordkeeping
(k) Dates
(c) Specified exposure control methods.
(1) For each employee engaged in a task identified on Table 1, the employer shall fully and properly implement the engineering controls, work practices, and respiratory protection specified for the task on Table 1, unless the employer assesses and limits the exposure of the employee to respirable crystalline silica in accordance with paragraph (d) of this section.
Specified Exposure Control Methods

- **Table 1** in the construction standard matches 18 tasks with effective dust control methods and, in some cases, respirator requirements.
- Employers that fully and properly implement controls on Table 1 do not have to:
 - Conduct exposure assessments for employees engaged in those tasks
 - Comply with the PEL
List of Table 1 Entries

- Stationary masonry saws
- Handheld power saws
- Handheld power saws for fiber cement board
- Walk-behind saws
- Drivable saws
- Rig-mounted core saws or drills
- Handheld and stand-mounted drills
- Dowel drilling rigs for concrete
- Vehicle-mounted drilling rigs for rock and concrete
- Jackhammers and handheld powered chipping tools
- Handheld grinders for mortar removal (i.e. tuckpointing)
- Handheld grinders for other than mortar removal
- Walk-behind milling machines and floor grinders
- Small drivable milling machines
- Large drivable milling machines
- Crushing machines
- Heavy equipment and utility vehicles to abrade or fracture silica materials
- Heavy equipment and utility vehicles for grading and excavating
Heavy Equipment used for Demolition
TABLE 1: SPECIFIED EXPOSURE CONTROL METHODS
WHEN WORKING WITH MATERIALS CONTAINING CRYSTALLINE SILICA

<table>
<thead>
<tr>
<th>Equipment / Task</th>
<th>Engineering and Work Practice Control Methods</th>
<th>Required Respiratory Protection and Minimum Assigned Protection Factor (APF)</th>
</tr>
</thead>
<tbody>
<tr>
<td>(xvii) Heavy equipment and utility vehicles used to abrade or fracture silica-containing materials (e.g., hoe-ramming, rock ripping) or used during demolition activities involving silica-containing materials</td>
<td>Operate equipment from within an enclosed cab. When employees outside of the cab are engaged in the task, apply water and/or dust suppressants as necessary to minimize dust emissions.</td>
<td>≤ 4 hours /shift: None > 4 hours /shift: None</td>
</tr>
</tbody>
</table>
Heavy Equipment used for Earthmoving
Heavy Equipment used for earthmoving tasks such as grading and excavating, but not demolition

<table>
<thead>
<tr>
<th>Equipment / Task</th>
<th>Engineering and Work Practice Control Methods</th>
<th>Required Respiratory Protection and Minimum Assigned Protection Factor (APF)</th>
</tr>
</thead>
</table>
| (xviii) Heavy equipment and utility vehicles for tasks such as grading and excavating but not including: demolishing, abrading, or fracturing silica-containing materials | Apply water and/or dust suppressants as necessary to minimize dust emissions.
- OR -
When the equipment operator is the only employee engaged in the task, operate equipment from within an enclosed cab. | None | None |

<table>
<thead>
<tr>
<th></th>
<th>4 hours /shift</th>
<th>> 4 hours /shift</th>
</tr>
</thead>
<tbody>
<tr>
<td>None</td>
<td>None</td>
<td></td>
</tr>
<tr>
<td>None</td>
<td>None</td>
<td></td>
</tr>
</tbody>
</table>
Specifications for Enclosed Cabs

(c)(2)(iii) For measures implemented that include an enclosed cab or booth, ensure that the enclosed cab or booth:

(A) Is maintained as free as practicable from settled dust;
(B) Has door seals and closing mechanisms that work properly;
(C) Has gaskets and seals that are in good condition and working properly;
(D) Is under positive pressure maintained through continuous delivery of fresh air;
(E) Has intake air that is filtered through a filter that is 95% efficient in the 0.3-10.0 μm range (e.g., MERV-16 or better); and
(F) Has heating and cooling capabilities.
Written Exposure Control Plan

Intended to help employers consistently control exposures by describing tasks resulting in exposure and controls for those exposures, as well as housekeeping measures.

Must include a description of:
• All tasks with silica exposure; and
• The controls used to reduce exposures.

Must also include the procedures for
• Frequent and regular inspections of the cabs; and
• Maintaining and cleaning the cab.
Mining Research – Benefits for Construction
Filtration and Pressurization Systems for Enclosed Cabs and Environmental Enclosures

Andrew Cecala
Principal Supervisory Mining Engineer
Dust, Ventilation, and Toxic Substances Branch, Pittsburgh Mining Research Division, NIOSH, CDC

The Centers for Construction Research and Training: Webinar – October 18, 2017
Presentation Outline

Filtration and Pressurization Research

• Background
• Field Studies
• Key Components
• MERV16 vs HEPA
• Application to Control Rooms/Operator Booths
• Pressure Monitoring System to Optimize Performance
Research Goal

Optimizing filtering and pressurization efficiency to minimize respirable (silica) dust exposure and provide maximum air quality in enclosed cabs, operator booths, and control rooms.
NIOSH’s Research

Dozers
Shovels
Loaders
Excavators
Haul Trucks
Drills
Underground Mining

Drills

Scalers

Roof bolters
What Level of Improvement is Achieved with a Filtration System?
Relative Performance Measures
Protection Factor; Efficiency; Penetration

\[PF = \frac{C_O}{C_I} \; ; \; \eta = \frac{C_O - C_I}{C_O} \; ; \; Pen = 1 - \eta \]

\[PF = \frac{C_O}{C_I} = \frac{1}{1 - \eta} = \frac{1}{Pen} \]
Comparison of Cab Performance Measures

<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>2</td>
<td>50</td>
<td>50</td>
</tr>
<tr>
<td>5</td>
<td>80</td>
<td>20</td>
</tr>
<tr>
<td>10</td>
<td>90</td>
<td>10</td>
</tr>
<tr>
<td>100</td>
<td>99</td>
<td>1</td>
</tr>
<tr>
<td>1000</td>
<td>99.9</td>
<td>0.1</td>
</tr>
</tbody>
</table>
Field Studies: Cooperative Efforts with Cab Filtration Manufacturers, OEMs, Mining Companies, & Government Agencies
Results from Field Studies

<table>
<thead>
<tr>
<th>Cab Evaluation</th>
<th>Mining Type</th>
<th>New vs. Retrofit</th>
<th>Cab Pressure, inches w.g.</th>
<th>Average Inside Cab Dust Level, mg/m³</th>
<th>Average Outside Cab Dust Level, mg/m³</th>
<th>Protection Factor</th>
</tr>
</thead>
<tbody>
<tr>
<td>Rotary Drill</td>
<td>Surface</td>
<td>Retrofit</td>
<td>None Detected</td>
<td>0.08</td>
<td>0.22</td>
<td>2.8</td>
</tr>
<tr>
<td>Haul Truck</td>
<td>Underground</td>
<td>Retrofit</td>
<td>0.01</td>
<td>0.32</td>
<td>1.01</td>
<td>3.2</td>
</tr>
<tr>
<td>Roof-bolter</td>
<td>Underground</td>
<td>New</td>
<td>0.05 - 0.10</td>
<td>0.12</td>
<td>0.92</td>
<td>8</td>
</tr>
<tr>
<td>Front-end Loader</td>
<td>Surface</td>
<td>Retrofit</td>
<td>0.015</td>
<td>0.03</td>
<td>0.30</td>
<td>10</td>
</tr>
<tr>
<td>Face Drill</td>
<td>Underground</td>
<td>New</td>
<td>0.05 - 0.20</td>
<td>0.19</td>
<td>2.43</td>
<td>28</td>
</tr>
<tr>
<td>Rotary Drill</td>
<td>Surface</td>
<td>Retrofit</td>
<td>0.20 - 0.40</td>
<td>0.05</td>
<td>2.80</td>
<td>56</td>
</tr>
<tr>
<td>Rotary Drill</td>
<td>Surface</td>
<td>Retrofit</td>
<td>0.07 – 0.12</td>
<td>0.70</td>
<td>6.125</td>
<td>89.3</td>
</tr>
</tbody>
</table>
Key Components for Effective Cab Filtration and Pressurization Systems
Effective Filtration

1. Pressurized Intake
2. Recirculated Cab Air
Pressurized Intake (Outside) Air

- 40 – 140 cfm
- At least 25 cfm dilute CO₂ exhaled per worker
- MERV-16 mechanical filter
- Powered Unit: Self-cleaning or centrifugal design
Intake Air: 40 – 140 cfm

Cab Positive Pressure (Reasonable Range): 0.08 to 0.25 inches wg
25 cfm Intake/Outside Air to Dilute CO$_2$ Exhaled by Each Worker

Powered Unit: Self-cleaning or Centrifugal Design

Self-cleaning

Centrifugal

Static
Recirculated Cab Air

- Effectiveness is by multiple passes through filter media
- Substantial reduction in cleaning time from in-cab dust sources
- MERV 14 -16 rated filter media
- 3-4 times the intake airflow quantity (200-300 cfm typical)
Cab Integrity

Installing new doors gaskets and seals/plugging and sealing cracks and holes
Secondary Design Considerations

Intake air inlet location

Locate intake inlet air away from major dust sources to minimize dust loading and require filter cleanings and changes.
Keep Doors and Windows Closed

Drill Operator: (adding drill steels – 3 days)
Door closed: 0.09 mg/m³
Door open: 0.81 mg/m³
Removing In-cab Dust Sources

Floor Heaters
Ease of Filter Changes
Recommend MERV-16 Mechanical Filters
Pressure Drop and Loading Efficiency
MERV Rating Efficiency

Minimum efficiency reporting values (MERV) according to the American Society of Heating, Refrigerating and Air-Conditioning Engineers (ASHRAE)

<table>
<thead>
<tr>
<th>Group</th>
<th>MERV Rating</th>
<th>Average particle size efficiency (PSE) 0.3–1.0 microns</th>
<th>Average particle size efficiency (PSE) 1.0–3.0 microns</th>
<th>Average particle size efficiency (PSE) 3.0–10.0 microns</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>1</td>
<td>< 20%</td>
<td>< 20%</td>
<td>< 20%</td>
</tr>
<tr>
<td></td>
<td>2</td>
<td>< 20%</td>
<td>< 20%</td>
<td>< 20%</td>
</tr>
<tr>
<td></td>
<td>3</td>
<td>< 20%</td>
<td>< 20%</td>
<td>< 20%</td>
</tr>
<tr>
<td></td>
<td>4</td>
<td>< 20%</td>
<td>< 20%</td>
<td>< 20%</td>
</tr>
<tr>
<td>2</td>
<td>5</td>
<td>20–34.9%</td>
<td>35–49.9%</td>
<td>50–69.9%</td>
</tr>
<tr>
<td></td>
<td>6</td>
<td>20–34.9%</td>
<td>35–49.9%</td>
<td>50–69.9%</td>
</tr>
<tr>
<td></td>
<td>7</td>
<td>20–34.9%</td>
<td>35–49.9%</td>
<td>50–69.9%</td>
</tr>
<tr>
<td></td>
<td>8</td>
<td>20–34.9%</td>
<td>35–49.9%</td>
<td>50–69.9%</td>
</tr>
<tr>
<td>3</td>
<td>9</td>
<td>< 50%</td>
<td>50–64.9%</td>
<td>≥ 85%</td>
</tr>
<tr>
<td></td>
<td>10</td>
<td>< 50%</td>
<td>50–64.9%</td>
<td>≥ 85%</td>
</tr>
<tr>
<td></td>
<td>11</td>
<td>< 50%</td>
<td>50–64.9%</td>
<td>≥ 85%</td>
</tr>
<tr>
<td></td>
<td>12</td>
<td>< 50%</td>
<td>50–64.9%</td>
<td>≥ 85%</td>
</tr>
<tr>
<td>4</td>
<td>13</td>
<td>< 75%</td>
<td>≥ 90%</td>
<td>≥ 90%</td>
</tr>
<tr>
<td></td>
<td>14</td>
<td>75–84.9%</td>
<td>≥ 90%</td>
<td>≥ 90%</td>
</tr>
<tr>
<td></td>
<td>15</td>
<td>75–84.9%</td>
<td>≥ 90%</td>
<td>≥ 90%</td>
</tr>
<tr>
<td></td>
<td>16</td>
<td>≥ 95%</td>
<td>≥ 95%</td>
<td>≥ 95%</td>
</tr>
<tr>
<td>HEPA</td>
<td></td>
<td>≥99.97%</td>
<td>≥99.97%</td>
<td>≥99.97%</td>
</tr>
</tbody>
</table>
Testing

MERV16 Testing – May thru November 2013
HEPA Testing – May thru November 2014

Single-boom Face Drill and Roof-bolter Machine
Static Test Mode

Mobile equipment was running without anyone in the enclosed cab to stir up or create any in-cab dust sources. Provides the highest PF for each of the enclosed cabs.

Note: HVAC Fan Operated on “High” Setting
Average PF Comparing MERV 16 and HEPA Filters

![Bar chart showing the comparison between MERV 16 and HEPA filters for Face drill and Roof-bolter types.](chart.png)
Comparing Intake Airflow and Positive Cab Pressure on Face Drill

![Graph showing the comparison of intake airflow and positive cab pressure on a face drill.](image-url)
Taking Information and Knowledge from Enclosed Cabs and Apply it to Operator Booths and Control Rooms

Crusher Operator Booth – surface (Wisconsin)

Control Room - surface facility (New Jersey)

Crusher Operator Booth – underground (Pennsylvania)
Filtration and Pressurization System at Crusher Operator Booth
Installation of Polar Mobility Unit

Protection Factors: 35 - 127
Retrofit Filtration and Pressurization System at Control Room at Industrial Minerals Processing Facility
RESULTS:

Protection Factors: 8 - 25

<table>
<thead>
<tr>
<th>Sample</th>
<th>Description</th>
<th>Efficiency (%)</th>
<th>Protection Factor</th>
</tr>
</thead>
<tbody>
<tr>
<td>Baseline</td>
<td>no filtration pressurization unit</td>
<td>-36±29</td>
<td>0.79±0.17</td>
</tr>
<tr>
<td>Post 1</td>
<td>the first two days of operating the filtration pressurization unit</td>
<td>87±4</td>
<td>8±3</td>
</tr>
<tr>
<td>Post 2</td>
<td>one year after installation of filtration pressurization unit</td>
<td>94±4</td>
<td>25±15</td>
</tr>
</tbody>
</table>
Retrofit Filtration and Pressurization System at Primary Crusher Operator Booth – Limestone Mine
Original System Effectiveness

Fan On: 6560 µg/m³
Fan Off: 530 µg/m³
Crusher Booth: System Upgrade

INTAKE

RECIRCULATION

475 ft³
Crusher Booth: Protection Factors

Protection Factors with MERV16 over 4X greater compared to HEPA

Protection Factors: 5 - 178
Pressure Monitor Testing

- Installed MERV16 Filter
- Fixed Leaky Plenum
- Filter Loading
- HEPA Filter

Graph showing pressure in inches of water column over time from January to April.
Miners’ Attention
"Where the dust meets the lungs"

Chester Fike
IMPACT: Major Mining OEMs Adopting Technology

1. Daniel Spurgeon, Manager of Cab Climate Systems
2. Meeting @ CAT Cab Summit 2015 – Peoria, Illinois
3. Delivered 30 min presentation on NIOSH cab filtration research
4. Met with Cab Climate Engineering team for 4 hours to discuss advances in technology

1. 7 yr. relationship initiated by Douglas Hardman – President
2. Coordination with Ward Morrison, Marc Endicott, Sean Farrell, Ben Newlow, M/Non-metal Division – Engineering (Most recent meeting: March 29, 2016 – Huntington, WV).

Improving the health of miners through the implementation of the filtration and pressurization technology through OEMs such as CAT, J.H. Fletcher, Atlas Copco, Volvo, Sandvik, Kawasaki, DUX Machinery, Terex, Hitachi, Elgin, XCMG, and after market distributors such as Sy-Klone International, Polar Mobility Research LTD, Clean Air Filter Company, MI Air Systems LLC, Red Dot Corporation, Bergstrom Climate Control Systems Corp, and Sigma Air Filters. This technology is being used around the world.
Questions?

Andy Cecala

412-386-6677: aic1@cdc.gov / Acecala@cdc.gov

Disclaimer:
Mention of a company name or product does not constitute endorsement by the Centers for Disease Control and Prevention. The findings and conclusions in this report are those of the authors and do not necessarily represent the views of the National Institute for Occupational Safety and Health.