Overview

This study estimated exposures to nano-size titanium dioxide (TiO2) while spraying and sanding a commercially available paint. The National Institute for Occupational Safety and Health (NIOSH) recommended exposure limit (REL) is eight times lower for ultrafine TiO2 (0.3 mg/m³) compared to fine TiO2 (2.4 mg/m³), as time-weighted average concentrations for up to 10 hours per day during a 40 hour workweek. Ultrafine includes nanoparticles. Air samples were collected while a tradesperson performed the tasks in an environmentally controlled chamber. Dust capture during sanding was provided by a dust collection bag or local exhaust ventilation attached to a high efficiency vacuum. Personal and bystander exposures were characterized using particle counts, airborne mass concentrations, and electron microscopy.

Key Findings

- Characterization of the paint before testing indicated that most of the TiO2 primary particles in the paint were nano-size and bound together to form larger structures, called agglomerates.
- Sonication in acetone caused the nanoparticles to separate, raising the question of whether paint thinners and mechanical mixing could mimic this effect observed in the lab.
- Individual nanoparticles were detected by particle counters during spraying and sanding but could not be confirmed by electron microscopy.
- Exposures during sanding were below the NIOSH REL. Dust levels were relatively low, and local exhaust ventilation significantly reduced the number of airborne nanoparticles.
- The researchers concluded that workers could potentially be exposed to levels above the NIOSH REL for ultrafine TiO2 when applying the paint with an airless sprayer.
- They recommended that employers and industrial hygienists should characterize exposures and use the hierarchy of controls to protect the health of employees.
- Future research should consider whether chemicals commonly used in construction, including those found in paint thinners, could impact occupational exposure to nanomaterials in paints.

For more information, contact:
Gavin West: gwest@cpwr.com
See abstract:
http://bit.ly/2vntBK0