Topics in Construction Safety and Health
Training:
An Interdisciplinary Annotated Bibliography

CPWR - The Center for Construction Research and Training
2018

8484 Georgia Avenue
Suite 1000
Silver Spring, MD 20910

PHONE: 301.578.8500
FAX: 301.578.8572
Injury statistics place the construction industry as a high-risk industry, making it necessary to investigate factors that influence accidents to be able to protect workers. Research was carried out to investigate the relationship existing among occupational stressors, psychological/physical symptoms and accident/injury and work days lost outcomes as experienced by manual workers engaged in a range of industrial construction occupations. Some of the occupational stressors significantly associated with self-reported and OSHA logged injuries were training, job certainty and safety climate of the company. The OSHA logged injuries were associated with the occurrence of headaches and feelings of tenseness on the job. These results imply that non-physical stressors should be included as a potential input associated with injuries in injury risk models for construction workers. Relevance to industry: Traditional approaches to workers’ safety in the construction industry have focused on the physical and biomechanical aspects of work by improving tools, equipment and task completion methods. The impact of psychosocial factors, specifically stress as experienced by construction workers, is an area of growing research, which is yielding results that suggest overall work safety on the construction site should take into account psychosocial aspects of work. © 2010 Elsevier B.V.

Spanish-speaking immigrant workers in construction are considered hard to reach and at high risk for work-related injury and fatality. This evaluation study describes the use of participatory methods and an evaluation checklist to consider a health and safety (H&S) training program for these workers. A previously developed training manual and model were disseminated to eight worker centers (WCs) through participatory research collaboration. It incorporated H&S training for workers while strengthening the role of WCs as sources for leadership development and worker empowerment. Design, delivery, reaction, application, and extension were assessed through individual interviews with participants, trained trainers, and center staff and through observation of training sessions and partner debriefs; pre- and post-training tests assessed participant learning. Results indicate moderate learning and application by participants and strong evidence for structural gains in and among WCs. We conclude that such partnerships and models are valuable tools for collaborating with hard-to-reach workers.

Most construction safety management processes rely on the hazard recognition capability of workers. Hazards that remain unidentified can potentially result in catastrophic injuries and illnesses. As such, thorough hazard recognition is fundamentally essential to protect the health and well-being of the construction workforce. Despite its importance, recent research indicates that a large proportion of hazards remain unrecognized, exposing workers to unmitigated risks. Surprisingly, safety research has not adequately focused on developing specialized strategies to develop construction worker competency in hazard recognition. This paper reports a two-year research effort with the following objectives: (1) develop a high-fidelity augmented virtual environment [System for Augmented Virtuality Environment Safety (SAVES)] that helps develop workers’ hazard recognition skill through
risk-free learning and immediate feedback; (2) embed cognitive retrieval mnemonics to improve longterm retention of cues for construction hazards; (3) evaluate the effectiveness of the strategy as an intervention on active construction crew by using the multiple baseline testing approach. The first two objectives were accomplished through a combined effort from a panel of 14 subject matter experts and five academic researchers. This was followed by field experiments to test the hypothesis that the experience with SAVES improves the proportion of hazards identified by participants during subsequent field operations. The findings revealed that crews, on average, were able to only identify 46% of hazards prior to the introduction of the intervention, but were able to recognize 77% of hazards in the postintervention phase. This study represents the first endeavor to measure the effectiveness of augmented virtuality and serious gaming in developing hazard signal detection skills in construction field settings.

Nearly every safety management activity is designed around the fundamental and implicit assumption that the workforce is capable of identifying hazards before exposure. Unfortunately, research shows preliminary evidence that construction crews perform relatively poorly with respect to hazard recognition. This may be attributable, in part, to the diverse and dynamic nature of construction work. Consequently, many hazards remain unidentified, uncontrolled, and unmanaged until they are encountered by workers. To advance theory and practice in the area of construction hazard recognition and communication, a large-scale, multiphase research project was conducted with the following objectives: (1) devise a new hazard recognition method based upon the principles of cognitive mnemonics and that promotes hazard recognition skill; (2) build a maturity model to improve hazard recognition performance and encourage hazard communication; and (3) experimentally measure improvement in hazard recognition and communication resulting from the new program. The first two objectives were achieved by using the nominal group technique driven by input from an expert panel of 14 industry professionals from organizations with world-class safety records and an average of 26 years of safety management experience. A new method for measuring the quality of prejob safety meetings was devised in a series of eight face-to-face meetings and teleconferences among the experts over a 1-year period. The null hypothesis that the strategy does not improve the proportion of hazards identified and communicated before the start of construction was experimentally tested with six crews using the multiple baseline testing approach. This is a series of concurrent longitudinal A-B designs that are time-lagged among independent treatment groups. The obtained observations were analyzed using interrupted time series regression models. The results showed that workers were able to identify and communicate an average of 38% of hazards before the intervention was applied and that the new strategy caused a weighted overall level-change improvement in hazard recognition skill of 31% (p<0.01)

Hazard identification and communication are integral to most construction methods, and every construction safety management activity. Unfortunately, in practice, significant hazards are often not recognized and communicated leading to sub-optimal hazard awareness at the crew level. To bridge this gap in performance, we conducted a two-year intensive research project focused on developing a strategy that increases the proportion of hazards identified, communicated, and managed. Specifically, we designed a hazard identification and transmission (HIT) board that is used in conjunction with energy-based retrieval mnemonics and facilitates identifying and communicating hazards during both
the planning and the execution phases. The strength of this strategy lies in the fact that workers are able to detect and communicate hazards in real time using energy-source mnemonic cues, which significantly reduces cognitive demand. Following development, we conducted immersive field studies to evaluate the impact of the devised strategy on two projects in the United States. Data from six crews were gathered using the rigorous multiple baseline testing experimental approach and analysis was conducted using interrupted time-series regression models. The results indicate that the crews were able to recognize and communicate only an average of 54% of hazards in the baseline phase, but were able to recognize and communicate 77% during the planning phase after using the intervention. An additional 6% of hazards were identified and communicated in the execution phase. This represents the first known formal effort to evaluate a real-time hazard identification and communication strategy for the construction industry. © 2014, Taylor & Francis.

One explanation for high injury rates and the recent plateau in construction safety performance is that workers remain unable to recognize and manage hazards in dynamic and transient construction environments. This notion is supported by recent experimental studies, which revealed that workers are typically unable to identify and manage over 55% of hazards in their immediate work environment. These alarming discoveries prompted a series of multiple baseline experiments that tested three interventions thought to improve hazard recognition. In these studies, data were gathered from over 3000 h of field observations with 103 workers and hazard recognition performance was measured before and after each intervention was introduced. All three interventions caused improvement in overall hazard recognition performance; however, each intervention’s impact on the recognition of specific types of hazards was not evaluated. This paper addresses this knowledge gap by presenting and in-depth analysis of these data that: (1) elucidates micro-level hazard recognition across different hazard types and categories and (2) evaluates the hazard-specific impact of three recently developed interventions. The results reveal that gravity, motion, mechanical, and electrical hazards are associated with the highest baseline hazard recognition levels; whereas temperature, chemical, radiation, and biological hazards were the least recognized hazards in both the baseline and post-intervention phases. This suggests the need for targeted hazard recognition programs that focus on energy sources that are commonly missed. © 2016 Elsevier Ltd

Serious respiratory illnesses have been reported among rescue/recovery workers (RRW) following the World Trade Center (WTC) attacks. Methods: We studied RRW enrolled in the WTC Health Registry to assess the effects of different respiratory protection equipment (RPE) types on respiratory outcomes, such as recurrent respiratory symptoms and diseases possibly associated with 9/11 exposures. We performed descriptive and multivariate analyses adjusting for demographics and exposure variables. Results: A total of 9,296 RRW met inclusion criteria. The strongest predictors of using adequate RPE were being affiliated with construction, utilities or environmental remediation organizations and having received RPE training. Workers who used respirators were less likely to report adverse respiratory outcomes compared to those who reported no/lower levels of respiratory protection. Conclusions: Level of respiratory protection was associated with the odds of reporting respiratory symptoms and diseases. Training, selection, fit testing, and consistent use of RPE should be emphasized among emergency responders. © 2011 Wiley Periodicals, Inc.
Three focus groups were conducted with residential construction workers from local New Jersey labor organizations to characterize barriers to fall protection use among residential construction contractors who work for companies with fewer than ten employees. Thirty-six residential construction workers volunteered to participate, the average age was thirty-nine years, and twenty-four (67%) were of Hispanic origin. Twelve (33%) of the participants reported having fallen from greater than 6 ft at work and twenty (56%) of the participants had known someone who has fallen from greater than 6 ft. Sixteen (44%) had not been provided with fall protection equipment by their employer and eighteen (50%) reported their current employer had not provided workplace safety training. Factors that created barriers to use of fall protection equipment such as equipment availability, employee/employer relationships, cultural differences, and company size were identified. Results from this study confirm that falls remain a concern among residential construction workers in small companies.

The number of Hispanics in the construction work force continues to grow and their fatal and nonfatal occupational injuries are higher than those in any other ethnic group in the United States. Focusing on safety and health for this group may reduce injuries and promote safe workplaces. However, involving hard-to-reach workers is a difficult process because of language and cultural differences within ethnic groups. This article presents findings on effective design, development, and dissemination of safety and health educational materials targeted to Hispanic construction workers. How to utilize a linguistically and culturally sensitive approach is described. The author stresses the need for collaboration among researchers, unions, community development organizations, and advocacy groups in this effort.

This study describes socio-demographic, health, and work factors as well as health and safety perceptions of day laborers who reported work-related health complaints and injuries. The researchers completed a secondary data analysis of 217 interviews conducted in 2009 with day laborers in a large city. The participants reported 83 health complaints or injuries (38%) that had occurred during the prior 12 months, with 57 of these complaints or injuries resulting in lost work time. Pain and soreness of the back were the most prevalent health complaints or injuries; 66% of participants did not report their injuries, 62% reported no health and safety training, 96% reported they needed personal protective equipment (PPE), and 63% were provided with PPE. Latino day laborers reported a high 12-month prevalence of work-related health complaints and injuries. Ongoing policy work is needed to encourage injury reporting by day laborers and the provision of health and safety training and PPE to this group of workers. Copyright © 2015 The Author(s).

OBJECTIVE: An important source of lead exposure is lead-based paint that is disturbed when unsafe work practices are used during renovation, remodeling, and maintenance activities. This study explores the success of a pilot lead-safe skills training program for home improvement contractors and their employees (including renovators, remodelers, and painters) and small property owners. METHODS: The study evaluates whether attendees at eight-hour lead-safe work practices training
courses learned and retained information about lead exposure; developed and retained positive attitudes toward lead-safe work practices; and developed lasting, positive behavioral intentions to use lead-safe work practice skills and techniques. A questionnaire was administered immediately before, immediately following, and several months following the training program. Coded data from the questionnaires were analyzed using SPSS software. RESULTS: Respondents showed statistically significant changes from before to after the training program, and the changes were maintained over time. Knowledge improved, and attitudes and behavioral intentions changed in a favorable direction. CONCLUSION: These results suggest that lead-safe training can be successful and can create lasting changes in lead-safe knowledge, attitudes, and behaviors.

Roofers continue to suffer frequent fall-related injuries and fatalities. The objectives of this research were (a) identifying the factors affecting roofer fall accidents; (b) investigating the frequency distributions of these factors; (c) examining the relationships between the factors; and (d) developing a statistical model for fatal and nonfatal fall outcomes. Occupational Safety & Health Administration (OSHA) accident data was analyzed using categorical variables. After establishing data demographics, cross-tabulation analysis was performed to determine factor relationships, and logistic regression modeling was done to predict accident outcomes using degree of injury as a dependent variable and the significant factors from cross-tabulation as independent variables. It was found that roofers most frequently experienced falls while working in smaller alteration/rehabilitation projects and at heights below 20 feet. Unguarded/improperly secured platforms, walkways, openings, edges and ladders, misjudgment of hazardous situation, and improper choice of equipment/process came out to be significant contributing factors. It was observed that the odds of fatality decreased when roofers were provided OSHA-compliant fall protection systems; used these systems; and received fall protection training per OSHA requirements. The model developed and validated in this study successfully predicted the fall accident outcomes in terms of fatality and nonfatal injury. © Associated Schools of Construction.

BACKGROUND: Occupational injury rates among day laborers have been estimated to be as high as 31%, where lack of personal protective equipment (PPE) use is repeatedly noted as a contributor to occupational injuries. METHODS: We distributed duffel bags containing nine pieces of PPE and provided training on their use to Chicago day laborers during six distribution sessions over two summers. Participants were contacted 4-8 weeks post-distribution and queried on PPE use. RESULTS: Of 117 participants who received the equipment, 42 completed the follow-up survey. Workers performed construction, demolition, and painting type tasks and most often used gloves, safety glasses, and respirators. Hardhats, coveralls, and earplugs were the least used. CONCLUSIONS: The PPE we provided was used during 94% of the jobs, and every one of the nine items was used. Hearing protection was underused. This project showed that providing PPE, along with training on its use, may increase PPE use among Chicago day laborers, likely preventing occupational injuries.

Collaborative efforts between the National Institute for Occupational Safety and Health (NIOSH) and the American Society of Safety Engineers (ASSE) led to a report focusing on overlapping occupational vulnerabilities, specifically small construction businesses employing young, non-native
workers. Following the report, an online survey was conducted by ASSE with construction business representatives focusing on training experiences of non-native workers. Results were grouped by business size (50 or fewer employees or more than 50 employees). Smaller businesses were less likely to employ a supervisor who speaks the same language as immigrant workers (p < .001). Non-native workers in small businesses received fewer hours of both initial safety training (p = .005) and monthly ongoing safety training (p = .042). Immigrant workers in smaller businesses were less likely to receive every type of safety training identified in the survey (including pre-work safety orientation [p < .001], job-specific training [p < .001], OSHA 10-hour training [p = .001], and federal/state required training [p < .001]). The results highlight some of the challenges a vulnerable worker population faces in a small business, and can be used to better focus intervention efforts. Among businesses represented in this sample, there are deficits in the amount, frequency, and format of workplace safety and health training provided to non-native workers in smaller construction businesses compared to those in larger businesses. The types of training conducted for non-native workers in small business were less likely to take into account the language and literacy issues faced by these workers. The findings suggest the need for a targeted approach in providing occupational safety and health training to non-native workers employed by smaller construction businesses.

The construction industry continues to experience high rates of musculoskeletal injuries despite the widespread promotion of ergonomic solutions. Participatory ergonomics (PE) has been suggested as one approach to engage workers and employers for reducing physical exposures from work tasks but a systematic review of participatory ergonomics programs showed inconclusive results. A process evaluation is used to monitor and document the implementation of a program and can aid in understanding the relationship between the program elements and the program outcomes. The purpose of this project is to describe a proposed process evaluation for use in a participatory ergonomics training program in construction workers and to evaluate its utility in a demonstration project among floor layers.

BACKGROUND: Work-related musculoskeletal disorders (WMSD) among construction workers remain high. Participatory ergonomics (PE) interventions that engage workers and employers in reducing work injury risks have shown mixed results. METHODS: Eight-six workers from seven contractors participated in a PE program. A logic model guided the process evaluation and summative evaluation of short-term and intermediate impacts and long-term outcomes from surveys and field records. RESULTS: Process measures showed good delivery of training, high worker engagement, and low contractor participation. Workers' knowledge improved and workers reported changes to work practices and tools used; contractor provision of appropriate equipment was low (33%). No changes were seen in symptoms or reported physical effort. CONCLUSIONS: The PE program produced many worker-identified ergonomic solutions, but lacked needed support from contractors. Future interventions should engage higher levels of the construction organizational system to improve contractor involvement for reducing WMSD. Am. J. Ind. Med. 59:465-475, 2016. (c) 2016 Wiley Periodicals, Inc.

BACKGROUND: The construction industry typically has one of the highest fatal and non-fatal injury rates compared with other industries. Residential construction workers are at particular risk of injury (work is in remote sites with small crews, there are often many subcontractors, and they have limited access to safety programs). Difficulty accessing information specific to this group has made research more challenging, therefore, there are few studies. This study evaluated the effectiveness of the HomeSafe Pilot Program, a safety education and training program designed to reduce injuries among residential construction workers. METHODS: Researchers evaluated whether overall and severe injury incidence rates declined during the intervention period. Data were analyzed using incidence rates and Poisson regression to control for the effect of antecedent secular trend. RESULTS: Injury incidence rates declined significantly following HomeSafe; however, this effect was not statistically significant once temporal variation was controlled. CONCLUSIONS: The decline in injury rates following HomeSafe cannot be attributed solely to HomeSafe, however, programmatic and methodologic limitations contributed to the inconclusive results. Further research into the hazards faced by residential construction workers is needed. Am. J. Ind. Med. 45:210-217, 2004.

BACKGROUND: Trench collapses ranked as the seventh leading cause of the possible twenty-nine causes of OSHA-inspected fatal construction events during the period 1991-2001. This study aims to examine why these fatalities occurred. METHODS: Forty-four case files from OSHA inspections of fatal trench collapses were reviewed. RESULTS: Improper protection of the excavation site where work was taking place was the leading fatality cause. Several organizational or physical conditions were present at many fatal sites; the most frequent was that no training had been provided for trenching. CONCLUSIONS: Presence of a competent, diligent person at the site would have prohibited most fatalities. The top cited violation was lack of protection, that is, benching, shoring, sloping, trench boxes, etc. (29 CFR 1926.652 (a) (1)).

Many causes for falls from ladders in construction are related to the user’s activities; however, the extent to which users comply with ladder use best practices is unknown and has not been well quantified before. We developed and tested an audit tool that assesses compliance with best practices guidelines for portable ladder use designed for applications in the construction industry. Implemented on a hand-held computer, the assessment tool consisted of a series of checklists categorized in four groups; ladder condition, setup, moving on a ladder, and completing tasks from a ladder. For these four observational categories, the resulting tool contained 31 and 33 questions for step and extension ladders, respectively. Three individuals trained to use the tool scored a set of photographs and videos depicting 25 ladder conditions, 20 ladder setups, 10 users moving on ladders, and 13 users completing tasks from a ladder for a total of 78 observations. The assessment tool had good agreement across and within raters. For the three raters, agreement ranged from 79% to 97% across the questions. Within one subject, kappa coefficients for the intrarater reliability ranged from 0.67 to 0.91. The tool offers a practical method to quantify best practices associated with ladder use that can ultimately inform targeted intervention efforts.

OBJECTIVES: This study was designed to evaluate the effects of safety and health training on work-related injury in the construction industry. METHODS: Union health insurance records, union
training records, and workers compensation data for 1993 and 1994 were analyzed for more than 8000 construction laborers in Washington State. RESULTS: After controlling for demographic factors, laborers who received safety and health training during the study period were 12% (95% confidence interval [CI] = 0.75-1.02) less likely than nontrained laborers to file for workers compensation. Among workers 16 to 24 years old, training was associated with a 42% (95% CI = 0.35-0.95) reduction in claims. CONCLUSIONS: These findings provide evidence of the effectiveness of safety and health training in preventing occupational injuries among construction laborers, particularly among younger workers. However, the results cover only a limited time and the long-term effects remain unclear.

INTRODUCTION: The National Institute for Occupational Safety and Health (NIOSH) has published reports detailing the results of investigations on selected work-related fatalities through the Fatality Assessment and Control Evaluation (FACE) program since 1982. METHOD: Information from construction-related FACE reports was coded into the Construction FACE Database (CFD). Use of the CFD was illustrated by analyzing major CFD variables. RESULTS: A total of 768 construction fatalities were included in the CFD. Information on decedents, safety training, use of PPE, and FACE recommendations were coded. Analysis shows that one in five decedents in the CFD died within the first two months on the job; 75% and 43% of reports recommended having safety training or installing protection equipment, respectively. CONCLUSION: Comprehensive research using FACE reports may improve understanding of work-related fatalities and provide much-needed information on injury prevention. PRACTICAL APPLICATION: The CFD allows researchers to analyze the FACE reports quantitatively and efficiently.

Background: Recent research indicates that 35 percent of blue-collar workers in the US currently smoke while only 20 percent of white-collar workers smoke. Over the last year, we have been working with heavy equipment operators, specifically the Local 324 Training Center of the International Union of Operating Engineers, to study the epidemiology of smoking, which is 29% compared to 21% among the general population. For the current study funded by the National Cancer Institute (1R21CA152247-01A1), we have developed the Tobacco Tactics website which will be compared to the state supported 1-800-QUIT-NOW telephone line. Outcome evaluation will compare those randomized to the Tobacco Tactics web-based intervention to those randomized to the 1-800-QUIT-NOW control condition on: a) 30-day and 6-month quit rates; b) cotinine levels; c) cigarettes smoked/day; d) number of quit attempts; and e) nicotine addiction. Process evaluation will compare the two groups on the: a) contacts with intervention; b) medications used; c) helpfulness of the nurse/coach; and d) willingness to recommend the intervention to others. Methods/Design: This will be a randomized controlled trial (N = 184). Both interventions will be offered during regularly scheduled safety training at Local 324 Training Center of the International Union of Operating Engineers and both will include optional provision of over-the-counter nicotine replacement therapy and the same number of telephone contacts. However, the Tobacco Tactics website has graphics tailored to Operating Engineers, tailored cessation feedback from the website, and follow up nurse counseling offered by multimedia options including phone and/or email, and/or e-community. Primary Analysis of Aim 1 will be conducted by using logistic regression to compare smoking habits (e.g., quit rates) of those in the intervention arm to those in the control arm. Primary analyses for Aim 2 will compare process measures (e.g., medications used) between the two groups by linear, logistic, and Poisson regression. Discussion: Dissemination of an efficacious work-site, web-based smoking
cessation intervention has the potential to substantially impact cancer rates among this population. Based on the outcome of this smaller study, wider scale testing in conjunction with the International Environment Technology Testing Center which services Operating Engineers across North America (including US, Mexico, and Canada) will be conducted. © 2012 Li et al; licensee BioMed Central Ltd.

Background: Skin cancer are increasing and some types of skin cancer are among the most lethal cancers yet are easily preventable. However, sun protection interventions are rarely implemented among outdoor workers. Our prior work shows that Michigan Operating Engineers (heavy equipment operators) spend an average of 4-5 hours in the sun, about one-third reported getting sun burned at least once a summer, and over half burned more than once a summer. About three-quarters of the sample never or only sometimes used sun block. Methods/design. Using the Health Belief Model as a guide, this randomized controlled trial (RCT) will test the efficacy of four sun protection interventions targeting Operating Engineers: a) education only; b) education and mailed sunscreen; c) education and text message reminders; and, d) education, mailed sunscreen, and text message reminders. Participations in the study will be offered during regularly scheduled safety trainings at the Local 324 Training Center. Pre- and post-intervention surveys will be collected to determine changes in sunscreen use and sun burning, the primary dependent variables. The analyses will include: a) paired t-tests to determine changes over time (from pre-intervention to post-intervention) in outcome variables (sunscreen use and burning) separately in the 4 intervention groups, b) Repeated Measures Analysis of Variance (RM-ANOVA) to compare the changes in outcomes across the 4 groups, and c) t-tests on change scores as follow-ups to the RM-ANOVA to determine exactly which groups differ from each other. Discussion. Based on the outcome of this study, we will develop a RO1 for wider scale testing and dissemination in conjunction with the International Training Center which services North America (including the US, Mexico, and Canada). Wide scale dissemination of an efficacious sun protection intervention has the potential to substantially impact skin cancer rates among this population. The ultimate goal is for high reach, high efficacy, and low cost. Trial registration. NCT01804595. © 2013 Duffy et al.; licensee BioMed Central Ltd.

Safety performance in the construction industry has improved significantly in the past four decades. This improvement has been attributed in part to the increased implementation of injury prevention strategies. Although the relative effectiveness of these strategies has been studied in previous research, there has been no attempt to evaluate their diffusion. To address this gap in knowledge, 12 highly effective administrative safety innovations were identified in literature, and 58 firms were interviewed to investigate their adoption rate. The diffusion patterns of the identified safety innovations were explored using four common innovation diffusion models: the internal, external, Bass, and Gompertz. The findings indicate that the internal and Bass models have the highest explanatory power and that internal factors are the most influential factors in adoption of safety innovations by construction firms. It was also found that project-specific training and safety meetings (91%), frequent worksite inspections (91%), and safety and health orientation and training (90%) are the three most commonly adopted safety innovations, and employment of a site safety manager (62%), subcontractor selection and management (64%), and substance abuse programs (69%) were the three innovations most infrequently implemented. The implication of the findings is that the construction industry has now reached saturation with respect to traditional injury prevention strategies and new safety innovations are needed.

Falls from height remain the leading cause of fatalities in residential construction. We used results from a comprehensive needs assessment to guide changes in fall prevention training in a joint union-contractor carpenter apprenticeship program; including surveys of 1018 apprentice carpenter and observational audits at 197 residential construction sites. The revised training utilized hands-on, participatory training methods preferred by the learners to address the safety gaps in the curriculum; including ladder use, leading edge work, truss setting, and use of scaffolding and personal fall arrest. We compared apprentice surveys (n = 1273) and residential worksite audits (n = 207) 1–2 years post-training with baseline measures. Apprentices working residential construction were more likely to fall from heights (OR = 2.26, 95% CI 1.59–3.21) than those working commercial construction. The revised training resulted in improved fall safety knowledge, self-reported worksite behaviors, risk perceptions, and safety climate, even after adjusting for temporal trends. We also observed significant improvements in fall safety compliance in most domains of the worksite audit, with larger changes observed in areas emphasized in the training, demonstrating specificity of the effect. Greater effects were noted in small and medium-sized contractors, who often have limited resources to devote to safety. Self-reported falls fell from 18.2 to 14.5 per 100 person-years of work. This research supports growing evidence that worksite safety can be improved by training. This curriculum could be readily adapted to other union apprenticeship programs. Fall safety of inexperienced residential construction workers’ should remain a focus of future research. © 2016 Elsevier Ltd

Falls from heights are a leading cause of morbidity and mortality among construction workers, especially inexperienced workers and those performing residential construction. This research reports changes in fall prevention behaviors following revision of fall prevention training in a union-based carpenters’ apprenticeship program. We used a comprehensive needs assessment to identify gaps in apprentice carpenters’ preparation to work at heights, used these results to guide a school-based fall prevention curriculum to fill these gaps, and measured the effects of the revised curriculum on knowledge, beliefs, and fall prevention behaviors.

Despite the construction industry’s generally positive reaction to the use of information and communication technologies (ICTs) in many of its functions, some of the profession’s key players reside in a digital divide and do not benefit from advances in technology. Hispanic construction workers, an at-risk population with high rates of workplace accidents, are affected by that divide because they rarely take advantage of available ICTs at work. One application of ICTs that can help Hispanic/Latino workers is computer-based training (CBT) for occupational safety. However, the design of CBT materials for Spanish-speaking workers needs to go beyond basic localization of existing products in English. A radical localization approach that uses participatory design sessions with construction workers and their supervisors is proposed in this paper. This case study reports that Latino workers reacted positively and retained knowledge from CBT materials, including videos with elements of humor and without graphic representations of accidents, modeled after the genre of a television situation comedy.

Developing effective workplace safety and risk communication materials for Latino construction workers poses a challenge for technical communicators. These workers are at a disadvantage because of culture and language differences on many job sites. Furthermore, low levels of literacy in any language and lack of proper training compound their job site communication problems. This article builds on cultural studies-based recommendations to develop discourse in workplace safety and risk that these workers can fully understand. The authors in this study used direct creative input from Latino construction workers in order to create safety and risk communication products that were evaluated as effective and culturally relevant for these workers and their peers. © The Author(s) 2012.

Background: Workplace mortality and severe injury are disproportionately distributed among foreign born and Hispanic construction workers. Worker Centers (WCs) provide services and advocacy for low-wage workers and a way for investigators to reach them. The goal of this project is to prevent occupational injuries by increasing awareness of hazards and self-efficacy among foreign born, Hispanic construction workers and by expanding the agenda of WCs to include occupational health and safety (H&S). Methods: Investigators partnered with eight WCs in seven cities to train worker leaders to deliver a modified OSHA 10-hr curriculum to their peers. Results: Thirty-two worker leaders trained 446 workers over 3 years. There was a demonstrated improvement in knowledge, hazard identification, self-efficacy, and sustainable H&S activities. Conclusions: This study provides evidence for successful implementation of a training intervention for low wage, low literacy Hispanic construction workers using a community-based participatory research approach. © 2013 Wiley Periodicals, Inc.

In 2000, Center for Construction Research and Training (CPWR)launched the electronic Library of Construction Occupational Safety and Health (eLCOSH) as a free online source of research and training information on the topic of construction safety and health. By 2010, it had grown to contain nearly 2,000 items, with more than 30,000 unique visitors each month, including safety and health professionals, researchers, workers, contractors and trainers. The site’s content had also diversified. For example, a search on noise brings up presentations, videos, images of noisy situations, toolbox talks, handouts for use by trainers or employers, as well as recent research findings and studies on noise and hearing conservation....

BACKGROUND AND GOALS: Despite the institution of explicit safety practices in construction, there continue to be exceedingly high rates of morbidity and mortality from work-related injury. This study's purpose was to identify, compare and contrast views of construction managers from large and small firms regarding construction safety practices. A complementary analysis was conducted with construction workers. METHODS: A semi-structured interview guide was used to elicit information from construction managers (n = 22) in a series of focus groups. Questions were designed to obtain information on direct safety practices and indirect practices such as communication style, attitude,
expectations, and unspoken messages. Data were analyzed using thematic content analysis. RESULTS: Managers identified a broad commitment to safety, worker training, a changing workplace culture, and uniform enforcement as key constructs in maintaining safe worksites. Findings indicate that successful managers need to be involved, principled, flexible, and innovative. Best practices, as well as unsuccessful injury prevention programs, were discussed in detail. Obstacles to consistent safety practice include poor training, production schedules and financial constraints. CONCLUSIONS: Construction managers play a pivotal role in the definition and implementation of safety practices in the workplace. In order to succeed in this role, they require a wide variety of management skills, upper management support, and tools that will help them instill and maintain a positive safety culture. Developing and expanding management skills of construction managers may assist them in dealing with the complexity of the construction work environment, as well as providing them with the tools necessary to decrease work-related injuries.

BACKGROUND: Low back pain (LBP) constitutes a major problem in construction. The magnitude and musculoskeletal injury characteristics in certain construction trades have been studied extensively. Musculoskeletal research targeting mason tenders is limited. High physical demands of the job primarily contribute to an increased risk of LBP experienced by these laborers. METHODS: A symptom survey was conducted to determine the magnitude and musculoskeletal injury characteristics among the mason tenders, and to identify work-related activities perceived by them as contributing to their disorders. RESULTS: The findings revealed that 82% of the mason tenders experienced at least one musculoskeletal symptom in the last year. LBP was the most frequently reported symptom (65%). Due to LBP, 12% of the laborers missed work and 18% of them visited a physician. Bending or twisting the back, working in the same position or in pain, and heavy lifting they perceived as the most problematic work-related activities. The vast majority of the laborers requested job-safety training. CONCLUSIONS: The mason tenders experienced high prevalence of LBP. To address the problem a model for primary prevention of LBP was developed and implemented in the trade. The model incorporated ergonomic principles, hazard recognition, and problem solving in the training curriculum for the union instructors teaching apprentices the trade-specific skills.

Work in construction is associated with a high risk for musculoskeletal disorders and injuries. The symptom survey was conducted to determine the magnitude and musculoskeletal injury characteristics among the cement and concrete workers and identify the most problematic work-related activities and job factors that might have contributed to the occurrence of these disorders. Findings revealed that a large proportion of the laborers (77%) experienced at least one musculoskeletal disorder in the last year. Low back pain was reported as the most frequently experienced symptom (66%). 'Working while in pain' the concrete workers perceived as the major problem in the trade. Other problematic work-related activities included 'bending or twisting the back', 'work in hot, cold or wet conditions', and 'handling heavy objects'. Most of the laborers (82%) requested on-the-job safety training. Survey results combined with the outcomes of focus groups discussions and work site observations were used in the design of a training program aimed at the prevention of musculoskeletal morbidity in the trade. The program incorporated ergonomics principles, hazard recognition, safe work practices, problem solving and personal protection in the training curriculum for membership of the trade.
Despite improvements in safety performance over the past 30 years, the construction industry still accounts for an injury-and-illness rate that is approximately five times greater than the all-industry average. This disproportionate injury-and-illness rate has been attributed, in part, to the complex, dynamic, and transient nature of construction projects. To address these challenges, construction organizations must be able to adapt to change by effectively identifying, capturing, storing, and transferring safety knowledge. To investigate how safety-knowledge management strategies are employed in the construction industry, 11 case studies were conducted with a geographically dispersed sample of American general contractors. The sample was stratified by experience modification rate (EMR), a relative measure of safety performance. The results of the case studies indicate that construction organizations tend to acquire safety knowledge from a variety of internal and external sources, but have ineffective knowledge storage and transfer systems, which impede the ability of the workforce to obtain critical knowledge to solve urgent safety-related problems. High-performing organizations were distinguished by their ability to manage tacit safety knowledge with formal processes such as data-entry systems that capture reactions to safety situations from experienced workers and safety mentoring. Other innovative strategies include acquiring tacit safety knowledge during safety stand-downs through interviews with workers and storing safety knowledge in proprietary training videos. © 2012 American Society of Civil Engineers.

PROBLEM: This study evaluated common scaffold safety practices in construction. METHOD: A 150-point checklist was used to evaluate supported scaffold safety practices at 113 scaffolds in nine areas of the eastern United States. RESULTS: Thirty-six scaffolds (31.9%) were either in danger of collapse or missing planking, guardrails, or adequate access. There was a strong statistical correlation between structural flaws and fall protection hazards, and between proper scaffold safety practice and (a) competent persons with scaffold safety training, (b) use of separate scaffold erection contractors, and (c) scaffolds that were not simple frame types. A slightly weaker correlation was found with union status of the scaffold erector, and no correlation was found with geography, site size, number of scaffold users, and trade working on the scaffold. DISCUSSION: Recommendations are made for safer scaffold practice, including a simple four-factor scaffold inspection method. IMPACT ON INDUSTRY: Implementation of the four-factor method could result in a cost-effective way to identify unsafe scaffolds.

The goal of this study was to test the effectiveness of a workplace intervention targeting work-life stress and safety-related psychosocial risk factors on health and safety outcomes. Data were collected over time using a randomized control trial design with 264 construction workers employed in an urban municipal department. The intervention involved family- and safety-supportive supervisor behavior training (computer-based), followed by two weeks of behavior tracking and a four-hour, facilitated team effectiveness session including supervisors and employees. A significant positive intervention effect was found for an objective measure of blood pressure at the 12-month follow-up. However, no significant intervention results were found for self-reported general health, safety participation, or safety compliance. These findings suggest that an intervention focused on supervisor support training and a team effectiveness process for planning and problem solving should be further
refined and utilized in order to improve employee health with additional research on the beneficial effects on worker safety.

It is not unusual to observe that actual schedule and quality performances are different from planned performances (e.g., schedule delay and rework) during a construction project. Such differences often result in production pressure (e.g., being pressed to work faster). Previous studies demonstrated that such production pressure negatively affects safety performance. However, the process by which production pressure influences safety performance, and to what extent, has not been fully investigated. As a result, the impact of production pressure has not been incorporated much into safety management in practice. In an effort to address this issue, this paper examines how production pressure relates to safety performance over time by identifying their feedback processes. A conceptual causal loop diagram is created to identify the relationship between schedule and quality performances (e.g., schedule delays and rework) and the components related to a safety program (e.g., workers' perceptions of safety, safety training, safety supervision, and crew size). A case study is then experimentally undertaken to investigate this relationship with accident occurrence with the use of data collected from a construction site; the case study is used to build a System Dynamics (SD) model. The SD model, then, is validated through inequality statistics analysis. Sensitivity analysis and statistical screening techniques further permit an evaluation of the impact of the managerial components on accident occurrence. The results of the case study indicate that schedule delays and rework are the critical factors affecting accident occurrence for the monitored project. © 2013 Elsevier Ltd.

Construction supervisors are crucial to eventual site safety performance. In the United States, the OSHA 30-hour training is becoming the de facto standard for supervisor safety competence. A literature review of recommended supervisor safety competencies reveals gaps when compared to the OSHA 30-hour training contents. We address this gap by identifying the necessary knowledge-based safety competencies that are most important for the front-line construction supervisor and prioritizing them for the first time. A Delphi process confirmed that knowledge of pre job planning, organizing work flow, establishing effective communication, and of routine and non-routine work tasks are highly important competencies for the construction supervisor to possess. Construction organizations who utilize the 30-hour training for supervisor safety competence must recognize its limitations and ensure supervisors are equipped with these additional competencies to effectively manage site safety. Government agencies should also recognize the policy limitations of requiring the 30-hour training for supervisors. © 2013 Elsevier Ltd.

The California Department of Health Services' Occupational Health Branch and others have identified the construction industry as being at high risk for injuries, illnesses, and fatalities. Effective tailgate trainings (brief job site safety meetings) can be a powerful tool to promote hazard awareness and safe work practices. The authors found that many contractors and supervisors conducted ineffective tailgate trainings. They developed the BuildSafe California Project to assist contractors to have more effective programs by holding 25 training-of-trainers sessions reaching 1,525 participants. The needs assessment, intervention, and evaluation results from the first 18 trainings are presented. Eighty-six percent of the participants found the program "very helpful." Participants used the materials
and made improvements in the quality and frequency of trainings. Supervisors must be skilled at conducting tailgate trainings as part of their responsibilities. There is a serious need to provide more culturally appropriate safety training in a workforce increasingly made up of Latino workers.

Although several studies have highlighted the importance of attention in reducing the number of injuries in the construction industry, few have attempted to empirically measure the attention of construction workers. One technique that can be used to measure worker attention is eye tracking, which is widely accepted as the most direct and continuous measure of attention because where one looks is highly correlated with where one is focusing his or her attention. Thus, with the fundamental objective of measuring the impacts of safety knowledge (specifically, training, work experience, and injury exposure) on construction workers' attentional allocation, this study demonstrates the application of eye tracking to the realm of construction safety practices. To achieve this objective, a laboratory experiment was designed in which participants identified safety hazards presented in 35 construction site images ordered randomly, each of which showed multiple hazards varying in safety risk. During the experiment, the eye movements of 27 construction workers were recorded using a head-mounted EyeLink II system. The impact of worker safety knowledge in terms of training, work experience, and injury exposure (independent variables) on eye-tracking metrics (dependent variables) was then assessed by implementing numerous permutation simulations. The results show that tacit safety knowledge acquired from work experience and injury exposure can significantly improve construction workers' hazard detection and visual search strategies. The results also demonstrate that (1) there is minimal difference, with or without the Occupational Safety and Health Administration 10-h certificate, in workers' search strategies and attentional patterns while exposed to or seeing hazardous situations; (2) relative to less experienced workers (<5 years), more experienced workers (>10 years) need less processing time and deploy more frequent short fixations on hazardous areas to maintain situational awareness of the environment; and (3) injury exposure significantly impacts a worker's visual search strategy and attentional allocation. In sum, practical safety knowledge and judgment on a jobsite requires the interaction of both tacit and explicit knowledge gained through work experience, injury exposure, and interactive safety training. This study significantly contributes to the literature by demonstrating the potential application of eye-tracking technology in studying the attentional allocation of construction workers. Regarding practice, the results of the study show that eye tracking can be used to improve worker training and preparedness, which will yield safer working conditions, detect at-risk workers, and improve the effectiveness of safety-training programs. © 2017 American Society of Civil Engineers.

Safe work practices for the use of trench boxes identified by a survey of utility contractors are presented. Trench boxes are designed to protect workers from cave-ins, but human error and judgment can lead to unnecessary risks. The practices include the prevention of workers leaving the trench by the backfill and the provision of frequent training courses.

This study investigated the effect of adding real planks, in virtual scaffolding models of elevation, on human performance in a surround-screen virtual reality (SSVR) system. Twenty-four
construction workers and 24 inexperienced controls performed walking tasks on real and virtual planks at three virtual heights (0, 6 m, 12 m) and two scaffolding-platform-width conditions (30, 60 cm). Gait patterns, walking instability measurements and cardiovascular reactivity were assessed. The results showed differences in human responses to real vs. virtual planks in walking patterns, instability score and heart-rate inter-beat intervals; it appeared that adding real planks in the SSVR virtual scaffolding model enhanced the quality of SSVR as a human - environment interface research tool. In addition, there were significant differences in performance between construction workers and the control group. The inexperienced participants were more unstable as compared to construction workers. Both groups increased their stride length with repetitions of the task, indicating a possibly confidence- or habit-related learning effect. The practical implications of this study are in the adoption of augmented virtual models of elevated construction environments for injury prevention research, and the development of programme for balance-control training to reduce the risk of falls at elevation before workers enter a construction job.

To further reduce injuries in the workplace, companies have begun focusing on organizational factors which may contribute to workplace safety. Safety climate is an organizational factor commonly cited as a predictor of injury occurrence. Characterized by the shared perceptions of employees, safety climate can be viewed as a snapshot of the prevailing state of safety in the organization at a discrete point in time. However, few studies have elaborated plausible mechanisms through which safety climate likely influences injury occurrence. A mediating model is proposed to link safety climate (i.e., management commitment to safety, return-to-work policies, post-injury administration, and safety training) with self-reported injury through employees' perceived control on safety. Factorial evidence substantiated that management commitment to safety, return-to-work policies, post-injury administration, and safety training are important dimensions of safety climate. In addition, the data support that safety climate is a critical factor predicting the history of a self-reported occupational injury, and that employee safety control mediates the relationship between safety climate and occupational injury. These findings highlight the importance of incorporating organizational factors and workers' characteristics in efforts to improve organizational safety performance.

Falls remain the leading cause of injuries and fatalities in the small residential roofing industry and analogous investigations are underrepresented in the literature. To address this issue, fall-protection training needs were explored through 29 semi-structured interviews among residential roofing subcontractors with respect to recommendations for the design of fall-protection training. Content analysis using grounded theory was conducted to analyze participants' responses. Results of the analysis revealed six themes related to the design of current fall-protection training: (1) barriers to safety training; (2) problems of formal safety-training programs; (3) recommendations for training implementation; (4) important areas for fall-protection training; (5) training delivery means; and (6) design features of training materials. Results of the study suggest the need for informal jobsite safety training to complement what had been covered in formalized safety training. This work also provides recommendations for the design of a more likely adopted fall-protection training program.

Background: Intervention studies in participatory ergonomics (PE) are often difficult to interpret due to limited descriptions of program planning and evaluation. Methods: In an ongoing PE program with floor layers, we developed a logic model to describe our program plan, and process and summative evaluations designed to describe the efficacy of the program. Results: The logic model was a useful tool for describing the program elements and subsequent modifications. The process evaluation measured how well the program was delivered as intended, and revealed the need for program modifications. The summative evaluation provided early measures of the efficacy of the program as delivered. Conclusions: Inadequate information on program delivery may lead to erroneous conclusions about intervention efficacy due to Type III error. A logic model guided the delivery and evaluation of our intervention and provides useful information to aid interpretation of results. © 2013 Wiley Periodicals, Inc.

Hispanics are a large and growing part of the United States workforce. Hispanic workers in the US construction industry comprise nearly 20% of the workforce and are projected to increase significantly over the next several decades. Construction companies in the United States will be challenged in melding Hispanic and American cultures on project job sites. Using an integration/differentiation/ambiguity framework of cultural analysis, this research focuses on the development of an introductory training program designed to fit the needs of the US construction industry. The purpose of the study is to identify aspects of construction which should either pursue cultural integration or preserve cultural differentiation as well as assess how much ambiguity can be anticipated in the cultural training programs. This is accomplished through a review of the literature as well as through a survey of contractor attitudes and needs related the use of Hispanic workers in their construction operations. This paper focuses on describing the research and development of various courses for improving communication between the American supervisor and the Hispanic laborer. Results from this study confirm that higher order industry values such as safety should be integrated across cultural groups, while specialized technical training can be effectively targeted to a specific cultural subgroup (differentiation). A certain degree of ambiguity in cultural identify and individualization of needs should be expected as boundaries between cultural subgroups blur over time.

Unrecognized or unmanaged hazards can expose workers to unanticipated safety risk and can potentially result in catastrophic safety incidents. Unfortunately, recent research has demonstrated that a large proportion of safety hazards remain unrecognized in construction workplaces. To improve hazard-recognition levels, employers adopt a variety of safety and hazard-recognition training programs. However, desirable levels of hazard recognition have not been achieved, and the expected benefits from training have not been attained. Such failure in training efforts have generally been attributed to the adoption of poor and ineffective training practices. While efforts are being undertaken to address these issues, construction research has not focused on developing or evaluating personalized training solutions that are customized to the learning needs of individual workers. To advance theory and practice, the objective of this study was to develop the first personalized training strategy targeted at improving hazard-recognition levels. The objective was accomplished by a collaborative effort involving two industry experts and three academic researchers, along with guidance from training literature. The training strategy incorporates important elements known to improve stimuli or threat detection in domains including medicine, the military, and aviation. The
elements include (1) visual cues to aid systematic hazard search, (2) personalized hazard-recognition performance feedback, (3) personalized eye-tracking visual attention feedback, and (4) metacognitive prompts that trigger the adoption of remedial measures. After development, the effectiveness of the training strategy in improving hazard recognition was empirically evaluated using the nonconcurrent multiple-baseline testing approach. The findings of the study showed that the participating workers on average were able to identify only 42% of hazards prior to the introduction of the intervention; but were able to recognize 77% of hazards in the intervention phase. The findings of this study will be of interest to practicing professionals seeking to improve hazard-recognition levels within construction. © 2016 American Society of Civil Engineers.

OBJECTIVE: We sought to describe the physical and mental health effects of the cleanup and recovery effort on workers at the World Trade Center disaster site. METHODS: A mailed survey was sent to truck drivers, heavy equipment operators, laborers, and carpenters. It assessed work-related exposures and somatic and mental health symptoms. In one open-ended question, respondents shared any aspect of their experiences they wished; these 332 narrative responses were analyzed using qualitative techniques. RESULTS: Respondents reported suffering debilitating consequences of their work, including depression, drug use, and posttraumatic stress disorder. They felt poorly prepared to work in a disaster, lacked protective equipment and training, and felt overwhelmed by the devastation they faced. CONCLUSIONS: These workers' experiences were qualitatively similar to the experiences of the first responders. To protect workers in the future, the focus on preparing "first" responders should be reconsidered more broadly.

BACKGROUND: Workers in the construction trades experience high rates of traumatic injury. An increasing number of workers in this industry speak only Spanish, including members of construction trade unions. This brief communication reports a dual language safety climate scale developed during a larger training intervention study. METHODS: Construction workers in two unions self-completed a previously validated 6-item safety climate scale modified for the construction trades. A seventh item was developed midway through the study and incorporated into the version completed by half of the respondents. For one union with a sizeable number of Spanish-speaking members, a dual-language (Spanish/English) version was administered. Follow-up telephone interviews conducted 3 months after the self-completed survey also included the safety climate scale. RESULTS: Cronbach's coefficient alpha was 0.85 for the 6-item scale and 0.85 for the 7-item scale. Similar coefficient alpha scores were found for the subgroup of Spanish-speakers on the 6- and 7-item scales. Spanish speakers with low education were less likely to respond to the scale when self-completing but not when it was administered by telephone in Spanish. CONCLUSION: This safety climate scale elicits consistent and reliable response from unionized construction workers when administered in English or in Spanish. Spanish literacy may be a consideration for the use of this scale among foreign-born Hispanic workers.

Background: This research aimed to improve residential construction foremen's communication skills and safety behaviors of their crewmembers when working at heights. Methods: Eighty-four residential construction foremen participated in the 8-hr fall prevention and safety communication training. We compared pre- and post-intervention surveys from foremen and their
crewmembers to measure the effect of training. Results: Foremen and crewmembers' ratings showed improvements in fall prevention knowledge, behaviors, and safety communication and were sustained 6-months post-training, with emphasized areas demonstrating larger increases. Ratings were similar between foremen and crewmembers, suggesting that the foremen effectively taught their crew and assigned accurate ratings. Based upon associations between safety behaviors and reported falls observed in prior research, we would expect a 16.6% decrease in the one year cumulative incidence of self-reported falls post-intervention. Conclusions: This intervention improved safety knowledge and behaviors of a large number of workers by training construction foremen in fall prevention and safety communication skills. Am. J. Ind. Med. 59:823–831, 2016. © 2016 Wiley Periodicals, Inc. © 2016 Wiley Periodicals, Inc.

PROBLEM: Falls from heights account for 64% of residential construction worker fatalities and 20% of missed work days. We hypothesized that worker safety would improve with foremen training in fall prevention and safety communication. METHOD: Training priorities identified through foreman and apprentice focus groups and surveys were integrated into an 8-hour training. We piloted the training with ten foremen employed by a residential builder. Carpenter trainers contrasted proper methods to protect workers from falls with methods observed at the foremen's worksites. Trainers presented methods to deliver toolbox talks and safety messages. Results from worksite observational audits (n=29) and foremen/crewmember surveys (n=97) administered before and after training were compared. RESULTS: We found that inexperienced workers are exposed to many fall hazards that they are often not prepared to negotiate. Fall protection is used inconsistently and worksite mentorship is often inadequate. Foremen feel pressured to meet productivity demands and some are unsure of the fall protection requirements. After the training, the frequency of daily mentoring and toolbox talks increased, and these talks became more interactive and focused on hazardous daily work tasks. Foremen observed their worksites for fall hazards more often. We observed increased compliance with fall protection and decreased unsafe behaviors during worksite audits. DISCUSSION: Designing the training to meet both foremen's and crewmembers' needs ensured the training was learner-centered and contextually-relevant. This pilot suggests that training residential foremen can increase use of fall protection, improve safety behaviors, and enhance on-the-job training and safety communication at their worksites. IMPACT ON INDUSTRY: Construction workers' training should target safety communication and mentoring skills with workers who will lead work crews. Interventions at multiple levels are necessary to increase safety compliance in residential construction and decrease falls from heights.

OBJECTIVES: Falls from heights are a leading cause of mortality and morbidity in the construction industry, especially among inexperienced workers. We surveyed apprentice carpenters to identify individual and organizational factors associated with falls from heights. METHODS: We developed a 72-item survey on fall prevention with multiple domains including fall experience, fall-prevention knowledge, risk perceptions, confidence in ability to prevent falls, training experience, and perceptions of the safety climate and crew safety behaviors. We administered the questionnaire to apprentice carpenters in this cross-sectional study. RESULTS: Of the 1025 respondents, 51% knew someone who had fallen from a height at work and 16% had personally fallen in the past year, with ladders accounting for most of the falls. Despite participation in school-based and on-the-job training, fall-prevention knowledge was poor. Ladders were perceived as low risk and ladder training was rare.
Apprentices reported high levels of unsafe, fall-related behaviors on their work crews. Apprentices in residential construction were more likely to fall than those in commercial construction, as were apprentices working on crews with fewer senior carpenters to provide mentorship, and those reporting more unsafe behaviors among fellow workers. CONCLUSIONS: Despite participation in a formal apprenticeship program, many apprentices work at heights without adequate preparation and subsequently experience falls. Apprenticeship programs can improve the timing and content of fall-prevention training. This study suggests that organizational changes in building practices, mentorship, and safety practices are also necessary to decrease worker falls from heights.

PROBLEM: Falls from heights in residential construction are common, especially among inexperienced workers. METHODS: We conducted a comprehensive needs assessment to determine gaps in the school-based apprentice carpenters' fall prevention training. A team of carpenter instructors and researchers revised the fall prevention training to fill these gaps. Apprentice evaluation and feedback guided ongoing curricular improvements. RESULTS: Most apprentice carpenters performed work tasks at heights prior to training and fall protection techniques were not commonly used at residential construction sites. Priorities of the revised school-based training included safe ladder habits, truss setting, scaffold use, guarding floor openings, and using personal fall arrest systems. New apprentices were targeted to ensure training prior to exposure at the workplace. We used adult learning principles to emphasize hands-on experiences. A framed portion of a residential construction site was fabricated to practice fall protection behaviors in a realistic setting. The revised curriculum has been delivered consistently and apprentice feedback has been very favorable. CONCLUSIONS: Integration of needs assessment results was invaluable in revising the school-based carpenters apprentice fall prevention curriculum. Working closely with the instructors to tailor learning experiences has provided preliminary positive results. IMPACT ON INDUSTRY: The fall safety of the residential construction industry continues to lag behind commercial construction and industrial settings. The National Occupational Research Agenda includes a Strategic Goal to strengthen and extend the reach of quality training and education in the construction industry via mechanisms such as construction safety and health training needs assessments. This study demonstrates how a structured process can be used to identify and remedy gaps and improve training effectiveness. We encourage others to take steps to assess and increase the impact of training efforts directed at all residential construction professionals; including both union and non-union workers. The implications are even greater in the non-union sector where most U.S. residential work is done.

Current data regarding construction noise exposure are confusing, and their implications are not well understood. This is due in part to measurement challenges. Using standard dosimetry for measuring noise levels in the construction industry is inadequate due to the multitask, variable environment of the construction worker. This study used a task-based approach to collect noise exposure data on selected construction tasks. Results of this effort include the identification of additional tasks or tools producing high levels of noise that had not been previously identified by trade representatives. Noise levels for a variety of tasks were used in the development of a computer-based training program designed for three construction trade groups: roofers, laborers, and carpenters. Providing construction workers with information on noise levels specific to their trades can improve the effectiveness of hearing conservation education by making the information relevant to workers' day-to-day experience.

Background: Masons have the highest rate of overexertion injuries among all construction trades and rank second for occupational back injuries in the United States. Identified ergonomic solutions are the primary method of reducing exposure to risk factors associated with musculoskeletal disorders. However, many construction workers lack knowledge about these solutions, as well as basic ergonomic principles. Construction apprentices, as they embark on their careers, are greatly in need of ergonomics training to minimize the cumulative exposure that leads to musculoskeletal disorders. Apprentices receive safety training; however, ergonomics training is often limited or non-existent. In addition, apprenticeship programs often lack "soft skills" training on how to appropriately respond to work environments and practices that are unsafe. The SAVE program - SAfety Voice for Ergonomics - strives to integrate evidence-based health and safety training strategies into masonry apprenticeship skills training to teach ergonomics, problem solving, and speaking up to communicate solutions that reduce musculoskeletal injury risk. The central hypothesis is that the combination of ergonomics training and safety voice promotion will be more effective than no training or either ergonomics training alone or safety voice training alone. Methods/design: Following the development and pilot testing of the SAVE intervention, SAVE will be evaluated in a cluster-randomized controlled trial at 12 masonry training centers across the U.S. Clusters of apprentices within centers will be assigned at random to one of four intervention groups (n = 24 per group): (1) ergonomics training only, (2) safety voice training only, (3) combined ergonomics and safety voice training, or (4) control group with no additional training intervention. Outcomes assessed at baseline, at the conclusion of training, and then at six and 12 months post training will include: musculoskeletal symptoms, general health perceptions, knowledge of ergonomic and safety voice principles, and perception and attitudes about ergonomic and safety voice issues. Discussion: Masons continue to have a high rate of musculoskeletal disorders. The trade has an expected increase of 40% in the number of workers by 2020. Therefore, a vetted intervention for apprentices entering the trade, such as SAVE, could reduce the burden of musculoskeletal disorders currently plaguing the trade. © 2016 Kincl et al.

BACKGROUND: Falls remain a serious source of morbidity and mortality in residential construction despite considerable knowledge of risk factors and prevention strategies. While training is universally viewed as positive, we know little about its effectiveness in preventing residential falls. METHODS: A series of focus groups were conducted with union apprentice carpenters (n = 36) at varied levels of training to elicit input on factors that might influence the effectiveness of residential fall prevention training, including hazard awareness, timing of elements of formal instruction, jobsite mentoring, and workplace norms. RESULTS: While apprentices identified many residential fall hazards, they voiced little concern about work near unprotected vertical or horizontal openings such as stairwells, window openings or leading edges. On residential jobs, apprentices worked at heights immediately and were often exposed to hazards they had not yet been trained to handle. The quality of mentoring varied tremendously, and things they had been taught in school were often not the norm on these small worksites. Use of fall arrest equipment was uncommon. Job insecurity in this fast-paced work environment influenced behaviors even when apprentices reported knowledge of safe
procedures; this was more of a problem for less experienced apprentices. CONCLUSIONS: These data provide compelling evidence that apprentices often do not apply safety principles they have been taught in school in the actual work environment, illuminating how attempts to empower workers through training alone can fall short. The findings have policy implications and demonstrate the importance of measuring more than knowledge when evaluating effectiveness of training.

BACKGROUND: Nail guns increase residential construction productivity but their use is associated with risk of injury. METHODS: Active surveillance data from 772 apprentice carpenters were used to document the injury risk associated with the use of nail guns and the potential impact of modifiable risk factors. Using reported work hours and nail gun injuries injury rates per 200,000 hr worked in the past year were calculated. Using estimates of hours of tool use, Poisson regression was used to calculate adjusted rate ratios for injury associated with time in the trade, trigger mechanism on the tools and training prior to injury. RESULTS: Forty-five percent of these apprentices had sustained a nail gun injury; injury rates in the past year based on hours of work were considerably higher than previously recognized. Those with less than 1 year in the trade compared to those with more than 5 years experience (RR = 2.7; 95% CI 1.2, 5.9) and those with no training in tool use (RR = 2.9; 95% CI 1.9, 4.4) were at greatest risk. After adjusting for experience and training, the rate of injury was twice as high with tools with a contact trip trigger compared to those with a sequential trigger (RR = 2.0; 95% CI 1.2, 3.3). CONCLUSIONS: Preventive measures should include change to the safer sequential trigger that prevents unintentional firing and early training in safe tool use. Because of the high prevalence of use of tools with contact trip triggers the greatest number of injuries among these apprentices could be prevented with an engineering solution.

INTRODUCTION: Nail guns are responsible for a significant injury burden in residential construction. Risk, based on hours of work, is particularly high among apprentice carpenters due in part to more frequent exposure to tool use. METHODS: Nail gun injuries were evaluated over 3 years among carpenters enrolled in two apprenticeship programs in the Midwest (2.3 million residential work hours observed) following initiation of training and a voluntary ANSI standard change calling for safer sequential triggers on framing nailers. Injury rates, based on hours of tool use, were calculated yearly. Rates and adjusted rate ratios were calculated with Poisson regression. Attributable risk percent (AR%) and population attributable risk (PAR%) were calculated yearly for modifiable independent risk factors for injury including lack of training in tool use and type of trigger mechanism on tools being used. RESULTS: As apprentices received training and safer trigger mechanisms became more widespread, injury rates decreased significantly (31%). While school training and hands-on mentoring were both important, injury rates were lowest among apprentices who received both. Although injury rates changed over the observation period, the relative risk comparing trigger mechanisms did not; contact trip triggers consistently carried a twofold risk. CONCLUSIONS: Although training and safer trigger use both increased, because of the relative prevalence of training and trigger exposures in this population, the engineering solution consistently had the potential to make more difference in population risk. Our findings demonstrate the utility of observational methods including measures of population-based risk in monitoring intervention effectiveness and making recommendations that lead to injury reduction.

PROBLEM: Nail guns are a common source of acute, and potentially serious, injury in residential construction. METHOD: Data on nail gun injuries, hours worked and hours of tool use were collected in 2008 from union apprentice carpenters (n=464) through classroom surveys; this completed four years of serial cross-sectional data collection from apprentices. A predictive model of injury risk was constructed using Poisson regression. RESULTS: Injury rates declined 55% from baseline measures in 2005 with early training and increased use of tools with sequential actuation. Injury rates declined among users of tools with both actuation systems, but the rates of injury were consistently twice as high among those using tools with contact trip triggers. DISCUSSION AND IMPACT: Nail gun injuries can be reduced markedly through early training and use of tools with sequential actuation. These successful efforts need to be diffused broadly, including to the non-union sector.

Results from state of Washington Occupational Safety and Health Administration (OSHA) health inspections were reviewed to characterize the level of control that existed at the work sites, identify common problems, and assess the success of targeting programs in finding and correcting uncontrolled health hazards. Data were obtained from 170 inspections conducted by industrial hygienists in a four-county area in 12 industries, including 10 that were targeted. Inspection data were accessed through the use of electronic databases and inspection reports then summarized by the following industries: bathtub refinishing, carbide tool and saw sharpening, fibercement siding installation, furniture refinishing, health care clinics, janitorial floor waxing service, landscaping, lawn maintenance, tree service, road construction, stone countertop fabrication, truck bed lining, warehouse and cold storage, and wood floor finishing. Targeted health hazards included worker exposure to airborne contaminants, noise, and bloodborne pathogens typical of the industry. Method and effectiveness of control of health hazards were evaluated by counting work sites with violations associated with engineering control, personal protective equipment, hearing conservation, or training. Results are presented by industry for the number and percentage of work sites that failed to provide required protection. Poor control of health hazards was generally found across all inspected industries. Follow-up inspections and self-reports of abatement found that more than 85% were able to successfully control the hazards and abate the violations. The results are further discussed as they relate to methods of control and risk and identifying existing and emerging high health hazard industries. Based on employment data and the poor hazard control that was found, most if not all the industries can be described as high health hazard, small-employer industries. The results can be used for the planning of interventions in other regions and industries.

Case study found that few of the Hispanic construction workers in the sample had formal safety training and many did not understand safety and health terms used in training.

BACKGROUND: Latino construction workers experience disparities in occupational death and injury rates. The Occupational Safety and Health Administration funded a fall prevention training program at the University of Nevada, Las Vegas in response to sharp increases in fall-related accidents
from 2005 to 2007. The grant's purpose was to improve fall protection for construction workers, with a focus on Latinos. This study assessed the effectiveness of social marketing for increasing fall prevention behaviors. METHODS: A multi-disciplinary team used a social marketing approach to plan the program. We conducted same day class evaluations and follow-up interviews 8 weeks later. RESULTS: The classes met trainee needs as evidenced by class evaluations and increased safety behaviors. However, Spanish-speaking Latinos did not attend in the same proportion as their representation in the Las Vegas population. CONCLUSIONS: A social marketing approach to planning was helpful to customize the training to Latino worker needs. However, due to the limitations of behavior change strategies, future programs should target employers and their obligation to provide safer workplaces.

Hazard recognition and the accurate perception of safety risk are fundamental to the success of any safety program. When hazards remain unrecognized, or the associated safety risk is underestimated, the likelihood of catastrophic and unexpected injuries dramatically increase. Unfortunately, recent research has found that a large number of hazards in construction remain unrecognized. Likewise, past studies have demonstrated that safety risk is widely underestimated within construction. To improve hazard recognition and the accurate perception of safety risk, employers adopt a wide variety of training programs. However, the prevalent use of ineffective and unengaging training methods have significantly impeded training efforts in construction. The purpose of this research was to assess the impact of safety training on two objective training outcomes: hazard recognition performance and safety risk perception. The research objectives were accomplished by gathering empirical data from 51 active projects in the United States. Specifically, data pertaining to the training method (i.e., high-engagement versus low-engagement training) adopted at the project level were gathered, following which the hazard recognition ability of representative workers and their safety risk perception levels were measured. The results of the study revealed that (1) compared to low-engagement training, high-engagement training is associated with higher levels of hazard recognition and safety risk perception; and (2) the effect of training on safety risk perception is mediated by hazard recognition performance. Therefore, workers representing projects that offered high-engagement training were able to identify a larger proportion of hazards, and consequently perceived that safety risk was relatively higher. The findings of this study will be useful to practicing professionals seeking to improve training delivery, hazard recognition performance, and the perception of safety risk within construction. This study represents the first formal attempt to empirically evaluate the holistic relationship between training, hazard recognition, and safety risk perception in the construction context. © 2016 American Society of Civil Engineers.

Most construction safety activities focus on managing identified hazards. Hazards that remain unrecognized, and as a result unmanaged, can potentially result in catastrophic and unexpected injuries. Therefore, proper hazard recognition is foundational to the success of any safety program. However, recent research has revealed that a large proportion of construction hazards remain unrecognized in construction projects. To improve hazard recognition performance, employers provide their workers with safety and hazard recognition training. Despite these efforts, desirable levels of hazard recognition have not been achieved, and the anticipated return on investment (ROI) from training has not been attained. Such failures in training efforts are partly because knowledge acquired through training programs is often not transferred or applied in the workplace. Subsequently, training
efforts do not alter work practices or behavior once workers return to the field. Other reasons for training failure include improper training delivery and the adoption of low-engagement training methods. To advance theory and practice in hazard recognition, training transfer, and training delivery, the objectives of this study were to (1) identify training transfer elements that maximize the transfer of safety training, (2) evaluate the relative effectiveness of the identified training transfer elements in transferring safety knowledge gained through training programs, and (3) assess the interaction effect between training method (i.e., high-engagement versus low-engagement training) and training transfer levels on hazard recognition performance. The objectives of the study were accomplished by gathering input from construction industry experts through interviews, questionnaire surveys, and the analysis of empirical data gathered from 51 case projects in the United States. The results of the study revealed that training efforts may be undermined if training transfer elements are not synergistically adopted. Specifically, the findings suggest that safety training is necessary, but is not sufficient to maximize training outcomes such as hazard recognition. To maximize safety training outcomes, employers must adopt training transfer elements along with high-engagement training methods. This study represents the first formal attempt to evaluate the role of training transfer elements in the construction context. © 2016 American Society of Civil Engineers.

BACKGROUND: Hearing conservation efforts in construction frequently rely on use of hearing protection devices (HPDs): however, training on HPDs is often not provided, and usage rates remain low. In this study, a hearing conservation training program was developed and pilot tested. METHODS: A theoretical model was selected as the basis for the program, and program contents and delivery methods were selected to optimize the effectiveness and flexibility of the training. Two evaluation measures were selected to assess training-related changes in self-reported HPD use. The first was a validated method using concurrent work-shift noise dosimetry, and the second was a survey concerning workers beliefs and attitudes towards HPDs and HPD use. RESULTS: The training program was pilot tested on a single construction site. Complete assessment data were available for 23 workers. The percent of time when hearing protection was used during noise levels above 85 dBA nearly doubled post-training, and the change was statistically significant. CONCLUSIONS: Pre- and post-training data from participating workers demonstrated that HPD use can be increased significantly with basic model-based training, even in industries with complex noise exposures such as construction.

This study reflects the collaborative efforts of university-based researchers, New Labor, a non-profit, membership-based worker center, the Laborers' International Union of North America New Jersey Chapter (LIUNA), and the N.J. Laborers Health and Safety Fund to develop a greater understanding of the needs, experiences, attitudes, and practices of the Latino day-labor workforce in New Jersey. Survey and qualitative data presented in this study address several questions about which there is currently very little information. These results strongly suggest that a significant subgroup of day laborers are both aware of and concerned about the dangers they face, open to opportunities for Spanish language training, and despite challenges, ready to use what they learn about health and safety. As a reflection of the perceptions and reports of roughly 150 day laborers, this project provides further validation of the importance of stakeholder involvement in research and training among hard-to-reach worker populations.

Latino day laborers often work at dangerous construction sites with little power to change conditions. We describe the development, implementation, and early-stage results of a program to train immigrant day laborers as safety liaisons. These are construction workers prepared to recognize and respond to health and safety hazards. Based in Newark, NJ, the project involves collaboration between New Labor, a membership-based worker center, and university researchers and labor educators. Safety liaisons undergo training and receive ongoing support for their roles. Both qualitative and quantitative data are collected to monitor progress. Although lacking in formal authority, safety liaisons have prompted improvements at specific sites, filed OSHA complaints, and developed a local worker council. Participatory training methods, opportunities for leadership outside the classroom, and participation in project planning have strengthened liaisons' effectiveness, leadership skills, and commitment. The safety liaison approach could be adapted by worker centers and their partner organizations.

OBJECTIVES: This study aimed to assess the adequacy of safety training provided to young Latino immigrant construction workers. The study posited that, because of their youth and immigrant status, these workers would be less likely to receive adequate training. METHODS: We interviewed 50 youths aged < or =21 who had worked at least 10 days in construction in the previous year. The in-person interview included 140 questions covering a range of construction work and health and safety experiences. RESULTS: Participants reported performing a range of hazardous tasks, some while under the age of 18. Of these, 68% to 72% reported receiving some training, but median training time was only 1 hour. Only 24% reported receiving written training material. Those with less English ability received less training. CONCLUSIONS: Young Latino immigrants in this study received inadequate training given the hazardous work they performed. CLINICAL SIGNIFICANCE: Results of this research, especially the relatively low level of English communication skills among young Latino workers, point to the need for increased bilingual services not just in worker safety training programs, but also in medical clinics and emergency rooms that treat Latino workers.

OBJECTIVE: Blue-collar workers are difficult to reach and less likely to successfully quit smoking. The objective of this study was to test a training site-based smoking cessation intervention. METHODS: This study is a randomized-controlled trial of a smoking cessation intervention that integrated occupational health concerns and was delivered in collaboration with unions to apprentices at 10 sites (n = 1,213). We evaluated smoking cessation at 1 and 6 months post-intervention. RESULTS: The baseline prevalence of smoking was 41%. We observed significantly higher quit rates in the intervention versus control group (26% vs. 16.8%; p = 0.014) 1 month after the intervention. However, the effects diminished over time so that the difference in quit rate was not significant at 6 month post-intervention (9% vs. 7.2%; p = 0.48). Intervention group members nevertheless reported a significant decrease in smoking intensity (OR = 3.13; 95% CI: 1.55-6.31) at 6 months post-intervention, compared to controls. CONCLUSION: The study demonstrates the feasibility of delivering an intervention through union apprentice programs. Furthermore, the notably better 1-month quit rate results among intervention members and the greater decrease in smoking intensity among intervention members who continued to smoke underscore the need to develop strategies to help reduce relapse among blue-collar workers who quit smoking.

Three studies were conducted to develop and evaluate safety toolbox talks about fatal construction incidents. Study 1 surveyed workers (n = 28) about existing pre-shift meetings. An evidence-based structure for toolbox talks was developed, and study 2 evaluated our selected line drawing illustration format with workers (n = 30). Study 3 evaluated supervisors' talks using: (1) new toolbox guides and (2) long-form investigation reports with workers from eight construction crews. In study 1, 25% of the sample reported never conducted safety meetings. In study 2, compared to photos, line drawings increased the distance workers' could correctly identify hazards by over 1.5 m. In study 3, the new format was preferred by 82% of supervisors, saved them 15 min preparation/presentation time, and produced favorable impacts with workers. Brief scripted toolbox talks made it easier for supervisors to share fatal stories and prevention recommendations with their crews. When the format includes scripted text for the supervisors, prompts for discussion and action items, and line drawings worker understanding can be enhanced. © 2016 Elsevier Ltd.

BACKGROUND: This study estimates job-related risks among common low wage occupations (cleaning, construction, food service, cashier/baggers, and factory workers) held by predominantly Haitian, El Salvadorian, and Brazilian immigrants living or working in Somerville, Massachusetts. METHODS: A community-based cross-sectional survey on immigrant occupational health was conducted between 2006 and 2009 and logistic regression was used to assess the job-related risks among the most common low wage occupations. RESULTS: Construction workers reported significantly higher health risks, and lower access to occupational health services than the other occupations. Compared to cashier/baggers, the reference population in this study, cleaners reported significantly lower access to health and safety and work training and no knowledge of workers' compensation. Factory workers reported significantly lower work training compared to cashier/baggers. Food service workers reported the least access to doctors compared to the other occupations. CONCLUSION: We found significant variability in risks among different low wage immigrant occupations. The type of occupation independently contributed to varying levels of risks among these jobs. We believe our findings to be conservative and recommend additional inquiry aimed at assuring the representativeness of our findings.

Objectives: The purpose of this sub-study was to determine whether operating engineers (heavy equipment operators) who failed to quit smoking in a randomized controlled trial would benefit from re-exposure to the interventions one year later. Methods: Operating Engineers attending workplace safety training groups during the winters of 2010 to 2012 were randomized by training group to either the Tobacco Tactics Web-based intervention or the 1-800-QUIT-NOW telephone line. Of the 145 original participants, 41 reappeared in training groups one year later and were re-randomized with their group. Seven-day point prevalence quit rates at 30-days and 6-months post-intervention were analyzed using the chi-square test and Fisher's exact test. Results: At 30-day follow-up, an additional 9.8% (4/41) of repeaters had quit smoking. At 6-month follow-up, 12.2% (5/41) of repeaters had quit smoking. At 30-day follow-up, increased quitting was more common among those re-randomized to the intervention group than among those who received the control treatment.
although this was not statistically significant and was no longer true at 6-month follow-up. Conclusions: Because many smokers make multiple attempts to quit smoking, re-enrollment of participants in smoking cessation trials may produce additional quitters. Copyright © PNG Publications. All rights reserved.

OBJECTIVE: The objective of this study was to examine the reported practices of construction firms and the beliefs of firm managers/supervisors with respect to employing youth under age 18 and ensuring their safety. PARTICIPANTS: The participants in this study were firm representatives from 54, mostly small to medium sized, construction firms in North Carolina. METHODS: Survey responses were analyzed for the entire sample and within strata of firm size (1-10, 11+ employees) using descriptive statistics. Percentages and 95% confidence intervals were calculated. Chi-square tests were used to test for statistical significance in differences between firm sizes. RESULTS: The findings suggest limits in the adequacy of safety training given to youth in construction, particularly in light of the minimal experience firms require of young hires, that managers' beliefs about the causes of young worker injury are largely focused on worker behaviors rather than on the presence of hazards, and that managers' compliance with child labor laws may be hampered by their lack of knowledge of these laws and an ambivalence toward their usefulness and enforcement. CONCLUSIONS: While larger studies are needed to confirm and advance these findings, when considered along with prior studies, they demonstrate the need to improve the safety of the construction environment for youth. The development of new educational interventions by health and safety professionals targeted at construction firms are supported, as are efforts by government regulators to increase enforcement and employer knowledge of the child labor laws.

Construction activities performed by workers are usually repetitive and physically demanding. Execution of such tasks in awkward postures can strain their body parts and can result in fatigue, injuries or in severe cases permanent disabilities. In view of this, it is essential to train workers, before the commencement of any construction activity. Furthermore, traditional worker monitoring methods are tedious, inefficient and are carried out manually whereas, an automated approach, apart from monitoring, can yield valuable information concerning work-related behavior of worker that can be beneficial for worker training in a virtual reality world. Our research work focuses on developing an automated approach for posture estimation and classification using a range camera for posture analysis and categorizing it as ergonomic or non-ergonomic. Using a range camera, first we classify worker's pose to determine whether a worker is 'standing', 'bending', 'sitting', or 'crawling' and then estimate the posture of the worker using OpenNI middleware to get the body joint angles and spatial locations. A predefined set of rules is then formulated to use this body posture information to categorize tasks as ergonomic or non-ergonomic. © 2012 Elsevier Ltd. All rights reserved.

Hurricane Sandy damaged or destroyed 76,000 buildings with over 300,000 housing units; nine percent of the total housing in New York City. Sandy also damaged 405 New York City Housing Authority (NYCHA) buildings, affecting 35,000 units. Affected residents were forced to move in with family, temporary housing, or endured long periods without heat or electricity, as most building systems were located in flooded basements. Additionally, workers, volunteers, and residents who engaged in cleanup were potentially exposed to raw sewage, mold, asbestos, lead, dust, carbon monoxide, as well as electrocution; slips, trips, and falls; and construction-related safety hazards. Stress and trauma were also significant. These exposures may cause death, disease, and injury. The need to provide protection programs and effective training crosses a number of populations including day laborers, volunteer groups, and residents who are involved in cleanup and rebuilding. The National Institute of Environmental Health Sciences (NIEHS) Worker Education and Training Program (WETP) has provided funding to more than 20 grantees including universities, labor unions, and other organizations to provide effective worker health and safety and disaster preparedness and response training for more than 20 years. This has built a critical infrastructure in the targeted industrial sectors and unions. WETP has also been active in disasters including September 11, Katrina, the Gulf oil spill, and Sandy. Preventing injury and disease in all the groups that are involved in disaster response, cleanup, and rebuilding warrants extending the NIEHS health and safety programs to volunteers, residents, and worker populations who previously have not had access to hazardous materials and related training programs. This can be accomplished by adapting health and safety programs and just-in-time training to the needs and cultures of these groups. These efforts should also further ongoing approaches to empower grantees and end-users so that they can independently build dynamic health and safety and training programs into their disaster preparedness and response work. © Mary Ann Liebert, Inc. 2015.

There is broad acceptance of the philosophic foundations of health education as grounded in the collaborative model of client and professional partnership. In practice, however, this partnership is largely dominated by the professional side. Workers may be particularly sensitive to professional domination as issues associated with health promotion vs. safety and health programs at the workplace are often politicized. This polarization is particularly evident in the area of asbestos-related hazard prevention, reduction, and education. Using asbestos hazards as the unifying theme, we participated in a program to facilitate active participation of workers in the production of their own occupational health education materials through the use of the photonovel. Representatives from some seven building trade locals worked with a staff to produce a twenty-four-page photonovel for their co-workers. A random sample of 500 members of building trades locals received either a copy of the photonovel or a popular NCI asbestos pamphlet with an evaluation questionnaire. Differences between the groups were evident in favor of the photonovel in readability, factual recall, general credibility, and attitudes toward future involvement in health and safety issues.

The U.S. Census Bureau's projection states that Hispanics form the largest minority group in the U.S. construction industry. A major challenge faced by American construction companies is the continually increasing number of fatalities among its Hispanic workers. According to the literature, illiteracy, the language barrier, and cultural differences are major causes of Hispanic worker fatalities. This study focuses on two out of these three aspects, i.e., language barriers and cultural differences.
The study was undertaken to explore the reasons behind the lack of safety awareness of Hispanic workers, and to investigate the measures that construction companies take to deal with this problem. The literature review identified the main issues that need to be addressed by construction companies to ensure the safety of Hispanic workers. A survey was created, asking supervisors/directors of the top U.S. construction companies about their safety initiatives. As a result, it was found that construction companies address the problems of language and cultural barriers by implementing initiatives such as hands-on training, English as a Second Language courses, bilingual trainers, vocabulary cards, social gatherings, and common workshops. This study may help the construction industry identify areas requiring attention in order to improve the safety of its Hispanic employees. © Taylor & Francis Group, LLC.

Introduction: Despite the size and breadth of OSHA's Outreach Training program for construction, information on its impact on work-related injury rates is limited. Methods: In a 9-year dynamic cohort of 17,106 union carpenters in Washington State, the effectiveness of OSHA Outreach Training on workers’ compensation claims rate was explored. Injury rates were calculated by training status overall and by carpenters' demographic and work characteristics using Poisson regression. Results: OSHA Outreach Training resulted in a 13% non-significant reduction in injury claims rates overall. The protective effect was more pronounced for carpenters in their apprenticeship years, drywall installers, and with increasing time since training. Conclusions: In line with these observed effects and prior research, it is unrealistic to expect OSHA Outreach Training alone to have large effects on union construction workers’ injury rates. Standard construction industry practice should include hazard awareness and protection training, coupled with more efficient approaches to injury control. Am. J. Ind. Med. 60:45–57, 2017. © 2016 Wiley Periodicals, Inc. © 2016 Wiley Periodicals, Inc.

Hearing protection devices (HPD) remain a primary method of prevention of noise-induced hearing loss despite their well-known limitations. A three-pronged intervention to increase HPD use was conducted among construction workers and included a baseline hearing loss prevention training, follow-up ‘toolbox’ (TB) reinforcement trainings, and use of a personal noise level indicator (NLI). A total of 176 subjects on eight sites completed three assessments. Prior to intervention, HPDs were used an average of 34.5% of the time and increased significantly, up about 12.1% after intervention and 7.5% two months after interventions were completed. The increase in HPD use was greatest among the group receiving both TB and NLI interventions; up about 25% from baseline, and this group was about two times more likely to use HPDs than the BL (baseline) training only group. This study demonstrates the mild impact of a well-constructed HPD use training and provides support for the additional use of a personal NLI to increase use of HPDs among construction workers. The most effective procedures for using such instruments require further exploration.

BACKGROUND: Hispanic (Latino) construction workers experience disparities in occupational death and injury rates in the United States. The cultural value of respect for those in authority may hinder these workers from requesting safe working conditions from supervisors. OBJECTIVE: To evaluate whether Hispanic construction workers in Las Vegas, Nevada found assertiveness training more useful than non-Hispanic trainees and whether or not they practiced this behavior at work.
the training. METHODS: An assertiveness training simulation was part of fall prevention classes offered to area construction workers. Eight weeks after the training, participants were interviewed by telephone about class topics they found most useful and whether or not they had made any subsequent behavior changes at work. RESULTS: More than half of the 760 fall prevention trainees completed telephone interviews. A smaller proportion of Hispanic trainees found assertiveness training to be useful (11%) than non-Hispanics (28%) (p < 0.001). Only 2% of both groups identified practicing assertiveness at work. CONCLUSIONS: A large proportion of Hispanic trainees valued other knowledge more highly. They may weigh job security as more important than speaking up about safety issues, which might threaten their employment. Interventions to improve safety should focus instead on improving work safety climate and engineering controls.

OBJECTIVE: The study objectives were to identify factors affecting extension ladders' angular positioning and evaluate the effectiveness of two anthropometric positioning methods. BACKGROUND: A leading cause for extension ladder fall incidents is a slide-out event, usually related to suboptimal ladder inclination. An improved ladder positioning method or procedure could reduce the risk of ladder stability failure and the related fall injury. METHOD: Participants in the study were 20 experienced and 20 inexperienced ladder users. A series of ladder positioning tests was performed in a laboratory environment with 4.88-m (16-ft) and 7.32-m (24-ft) ladders in extended and retracted positions. The setup methods included a no-instruction condition and two anthropometric approaches: the American National Standards Institute A14 and "fireman" methods. Performance measures included positioning angle and time. RESULTS: The results indicated that ladder setup method and ladder effective length, defined by size and extended state, affected ladder positioning angle. On average, both anthropometric methods were effective in improving extension ladder positioning; however, they required 50% more time than did the no-instruction condition and had a 9.5% probability of setting the ladder at a less-than-70 degrees angle. Shorter ladders were consistently positioned at shallower angles. CONCLUSION: Anthropometric methods may lead to safer ladder positioning than does no instruction when accurately and correctly performed. Workers tended to underperform as compared with their theoretical anthropometric estimates. Specific training or use of an assistive device may be needed to improve ladder users' performance. APPLICATION: The results provide practical insights for employers and workers to correctly set up extension ladders.

OBJECTIVE: We evaluated knowledge, attitudes, and self-reported work practices among apprentice and journeyman trainees in two construction trades at baseline and three months after participation in two training sessions as part of a 10-hour Occupational Safety and Health Administration hazard awareness training program. We developed preliminary assessment of prior and current training impact, accounting for demographics, trade, and construction site safety climate. METHODS: Participants were recruited prior to union-delivered safety training, self-completed a baseline survey prior to class, and completed a follow-up interviewer-administered telephone survey three months later. Discrimination (D) testing evaluated knowledge questions, paired t-tests examined differences in pre- and post-intervention knowledge, and attitude responses were tested with the
Wilcoxon signed rank test. Linear regression analysis and logistic regression were used to assess the contribution of different categorical responses to specific sub-questions. RESULTS: Of 175 workers completing the baseline survey, 127 were born in the U.S. and 41 were born in Mexico; 40% of those who reported ethnicity were Hispanic. Follow-up surveys were completed by 92 (53%) respondents and documented significant increases in both fall safety and electrical safety knowledge. The most recent safety climate was associated with improvement in fall safety attitudes (slope = 0.49, p < 0.005) when adjusted by country of birth (slope = 0.51, p < 0.001). Workers born in Mexico had less formal education than U.S.-born workers and lower baseline knowledge scores, but more positive attitude scores at baseline and greater improvements in attitude at follow-up. CONCLUSION: Knowledge and attitude improvement following a one-hour safety class was measurable at three months in both U.S.-born and Mexican-born construction workers.

A web-based survey of union-based outreach instructors evaluated training materials developed to teach OSHA ten-hour hazard-awareness courses to members of the construction trades. Respondents taught an average of five ten-hour hazard-awareness courses per year. When asked about hazards commonly encountered by their trainees, 83% identified falls from ladders, with a range of 1-22 hazards identified. Over one third of the trainers taught individuals whose primary languages were not English. Increased interaction with trainees through subsequent phone calls may be a marker of differential training impact.

In phase 1 of a large multiyear effort, health communication and health promotion models were used to develop a comprehensive hearing loss prevention training program for carpenters. Additionally, a survey was designed to be used as an evaluation instrument. The models informed an iterative research process in which the authors used key informant interviews, focus groups, and early versions of the survey tool to identify critical issues expected to be relevant to the success of the hearing loss prevention training. Commonly held attitudes and beliefs associated with occupational noise exposure and hearing losses, as well as issues associated with the use or non-use of hearing protectors, were identified. The training program was then specifically constructed to positively shape attitudes, beliefs, and behavioral intentions associated with healthy hearing behaviors - especially those associated with appropriate hearing protector use. The goal was to directly address the key issues and overcome the barriers identified during the formative research phase. The survey was finalized using factor analysis methods and repeated pilot testing. It was designed to be used with the training as an evaluation tool and thus could indicate changes over time in attitudes, beliefs, and behavioral intentions regarding hearing loss prevention. Finally, the training program was fine tuned with industry participation so that its delivery would integrate seamlessly into the existing health and safety training provided to apprentice carpenters. In phase 2, reported elsewhere in this volume, the training program and the survey were tested through a demonstration project at two sites.

Two demonstration projects were conducted to evaluate the effectiveness of a comprehensive training program for carpenters. This training was paired with audiometry and counseling and a survey of attitudes and beliefs in hearing loss prevention. All participants received hearing tests, multimedia
instruction on occupational noise exposure/hearing loss, and instruction and practice in using a diverse selection of hearing protection devices (HPDs). A total of 103 apprentice carpenters participated in the Year 1 training, were given a large supply of these HPDs, and instructions on how to get additional free supplies if they ran out during the 1-year interval between initial and follow-up training. Forty-two participants responded to the survey a second time a year later and completed the Year 2 training. Significant test-retest differences were found between the pre-training and the post-training survey scores. Both forms of instruction (individual versus group) produced equivalent outcomes. The results indicated that training was able to bring all apprentice participants up to the same desired level with regard to attitudes, beliefs, and behavioral intentions to use hearing protection properly. It was concluded that the health communication models used to develop the educational and training materials for this effort were extremely effective.

The 2008 recession saw a significant decrease in reported injury rates. Construction is an inherently dangerous industry. Its injury rates for the industry annually rank near the top of all U.S. industries. The Occupational Safety and Health Administration (OSHA) is charged with regulating U.S. workplace safety. Towards this end, they provide enforcement and promote training. A standardized 10. h training course sanctioned by OSHA is available for construction workers in all states. In 2004, Massachusetts became the first of seven states to legislate mandated OSHA 10. h training for construction workers on most public projects. Previous studies have shown that occupational safety training has beneficial effects on knowledge gain and improved behavior but there is weak evidence for improved safety outcomes. The natural experiment created by mandated training provided the opportunity to study the effects of mandated training on these outcomes. This study uses the Bureau of Labor Statistics (BLS) 2004-2012 State Occupational Injury and Illness data in a random effects multiple regression analysis and BLS 2008-2011 fatality data from the Census of Fatal Occupational Injuries to examine fatality trends across different strata. The results are highly encouraging but fall short of definitive evidence. The post-mandate fatality trend results compare favorably against other state groupings and the non-fatal injury regression indicated a nearly statistically significant marginal effect for mandated training. However these results are clouded by the short duration of trend data and injury data known to be underreported. Recommendations include more extensive recordkeeping for OSHA 10. h training and improved injury surveillance. © 2015 The Author.

Most construction worker education and training environments apply traditional teaching methods to educate workers about hazards and productivity in the workplace. Many rely on using conventional teacher-student classroom settings, but there are few effective interactive methods applied which can objectively engage trainer and trainees and assess their performance during and after training sessions. Presented is a novel approach towards integrating real-time location tracking and three-dimensional immersive data visualization technologies in existing construction worker education and training environments. The scope is limited to steel-erection tasks performed by union ironworkers in an indoor training center. Results to analysis and visualization of the gathered data from training session are shown. The potential for assessing and improving the trainers' and apprentices' safety and productivity performance is explained. Since such technologies have hardly been used as part of existing construction education and training techniques, the opportunities including return on investment and user feedback were studied. The results show that unsafe practices in worker training environments can be detected and visualized and furthermore their training effectiveness can be indirectly measured.

BACKGROUND: Few assessments have been conducted on the impact of a "Train-the-Trainer" (T3) approach for training delivery. The present study compared the effectiveness of a noise induced hearing loss (NIHL) prevention training delivered using "Train-the-Trainer" and expert trainer modalities. METHODS: Participating construction companies were assigned to the Train-the-Trainer or expert trainer modalities. Workers were recruited from each company and then trained. The effectiveness of the modalities was assessed through the use of surveys. The accuracy of self-reported hearing protection device (HPD) use was also evaluated through on-site observation. RESULTS: Post-training scores for hearing conservation knowledge, perceived barriers, and current and intended future use of HPDs improved significantly for both training modalities. Subjects trained by T3 trainers significantly increased their beliefs regarding general susceptibility to NIHL, desire to prevent NIHL, and ability to recognize, and control hazardous noise exposures. The expert-trained groups significantly increased their beliefs regarding the benefits of HPD use and ability to ask for help with HPDs. The only changes that were significantly different between modalities were in general susceptibility to NIHL and effective use of HPDs. However, these beliefs differed significantly between subjects in the two-modality groups prior to training. Self-reported HPD use was poorly correlated with observed use, calling into question the validity of survey-based HPD use measures in this context. CONCLUSIONS: The training improved beliefs regarding HPD use, increased workers' hearing conservation knowledge, and increased self-reported HPD use. The effectiveness of the training was not found to be dependent on training modality.

An effective theory-based intervention strategy is developed to improve worker adoption of a ventilated dust-control tool that reduces dust exposure by 95%. The Prevention through Design Adoption Readiness Model (PtD ARM) was employed to develop educational materials, hands-on training, and worksite cues-to-action. Educational materials were targeted to improve worker knowledge of the health risks associated with construction dusts. Hands-on training was developed with the objective of improving worker self-efficacy regarding the new equipment. Additionally cues-to-action were given to the workers. These cues were hard-hat stickers and t-shirts with reminder slogans. In a pretest/posttest experimental design with control group (n=40), questionnaire data were analyzed using independent t-tests of the gain-scores, and significant changes (p<0.05) were seen in worker self-efficacy, trust-in-technology, and overall readiness to adopt the tool. Theory-based intervention strategies were found to be effective in improving worker willingness to use ventilated tools. The most impactful intervention methods include training regarding risks to worker health, hands-on training with ventilated tools, and cues-to-action reminders to use the tools. © 2016 American Society of Civil Engineers.

BACKGROUND: Immigrant Latino day laborers working in residential construction are at particularly high risk of fatal and non-fatal traumatic injury and benefit from targeted training. OBJECTIVE: To understand the impact of a participatory, peer-facilitated health and safety awareness training customized to the needs of Latino day laborers. METHODS: Baseline surveys exploring exposures, PPE use, attitudes, work practices and work-related injuries were collected from more than 300 New Jersey Latino day laborers in construction prior to their participation in a one day (minimum
of six hour) Spanish language health and safety training class. The classes, led by trained worker trainers, engaged participants in a series of tasks requiring teamwork and active problem solving focused on applying safe practices to situations they encounter at their worksites. Follow-up surveys were difficult to obtain among mobile day laborers, and were collected from 70 men (22% response rate) 2-6 months following training. Chi-square analysis was used to compare pre- and post-intervention PPE use, self protective actions, and self-reported injury rates. Focus groups and in-depth interviews addressing similar issues provided a context for discussing the survey findings. RESULTS: At baseline, the majority of day laborers who participated in this study reported great concern about the hazards of their work and were receptive to learning about health and safety despite limited influence over employers. Changes from baseline to follow-up revealed statistically significant differences in the use of certain types of PPE (hard hats, work boots with steel toes, safety harnesses, and visible safety vests), and in the frequency of self-protective work practices (e.g., trying to find out more about job hazards on your own). There was also a suggestive decrease in self-reported injuries (receiving an injury at work serious enough that you had to stop working for the rest of the day) post-training based on small numbers. Sixty-six percent of workers surveyed post-training reported sharing information from their safety workbook with friends and co-workers. Focus groups and interview results generally confirmed the quantitative findings. CONCLUSIONS: Participatory, peer led training tailored to the needs of construction day laborers may have a positive effect on Latino immigrant workers' attitudes, work practices, and self reported injury rates, but major changes would require employer engagement. IMPACT ON INDUSTRY: Health and safety researchers have identified reducing the number of traumatic injuries among the immigrant construction workforce as an increasingly important priority. This project provides one model for collaboration between university-based researchers, a union, and a community-based organization. The specific elements of this project-participatory curriculum customized to the needs of day laborers in residential construction, training day laborers to facilitate training classes, and involving peer leaders in outreach and research-could be adapted by other organizations. The findings of this study suggest that the Latino day laborers have a strong interest in and some ability to act on health and safety information. Widespread implementation of this type of training, especially if supported with cooperation from residential contractors, could lead to reduced rates of traumatic injury in the residential construction industry.

Efforts have been taken for years to minimize the occupational safety and health (OSH) risk, but the injury records remain a constant reason for worldwide concerns. Many firms often implement technology as an administrative hierarchy of control (HOC). However, technologies may also actively influence safe practices at the managerial level for administrative HOC. This research examines electrical safety hazards in the U.S. construction industry as a basis for, studying the feasibility of using technology to integrate safety culture into the administrative level of OSH risk mitigation. The researchers introduce the concept of “habitus”, which suggests one possibility for establishing a safety culture that increases workers’ safety performance and integrates into workers’ safety practices through cutting-edge information technology. A prototype application for OSH training based on mobile virtual reality (MVR) technology is demonstrated to help establish habitus in workers’ daily practices, and ultimately to mitigate OSH risks at the administrative level of construction projects. Results from a preliminary validation test strongly support human behavior influence and safe work knowledge comprehension by the prototyped application. Although this prototype is demonstrated as a pilot study of electrical safety, the application is not limited to this area and is scalable to other OSH risks. © 2016 Vilnius Gediminas Technical University (VGTU) Press.

Electrocution is among the ‘fatal four’ in US construction according to the Occupational Safety and Health Administration. Learning from failures is believed to be an effective path to success, with deaths being the most serious system failures. This paper examined the failures in electrical safety by analysing all electrical fatality investigations (N = 132) occurring between 1989 and 2010 from the Fatality Assessment and Control Evaluation programme that is completed by the National Institute of Occupational Safety and Health. Results reveal the features of the electrical fatalities in construction and disclose the most common electrical safety challenges on construction sites. This research also suggests the sociotechnical system breakdowns and the less effectiveness of current safety training programmes may significantly contribute to worker’s unsafe behaviours and electrical fatality occurrences. © 2013 © 2013 Taylor & Francis.

Pavement preservation is a proactive approach to maintaining existing highways. Freeway-preservation projects typically require construction workers to conduct their work in close proximity to ongoing high-speed traffic. This exposure creates a dangerous situation for both workers and passing motorists. A recent study funded by the Oregon Department of Transportation (ODOT) implemented and evaluated different types of traffic-control devices on highway-preservation projects to reduce vehicle speeds and create safer work zones. The study implemented combinations of multiple traffic-control devices [speed-limit (“Speed 50”) signs, portable changeable message signs (PCMSs), and radar speed displays] in two case study projects and evaluated their effects on vehicle speed. The researchers used fixed-location sensors and probe vehicle runs to collect data on traffic speed. The results indicate that using a combination of PCMSs and radar speed displays is the best choice. Although data from the probe vehicle runs could not be used for statistical analysis because of limitations on the number of runs conducted, the data provide a vivid and direct view of how individual motorists behave in a construction work zone. The study also provides valuable insight into the effectiveness of the traffic-control measures that contractors can use to design safety into their work operations and further improve the safety in work zones. © 2017 American Society of Civil Engineers.