Biomechanics of ladder falls: Informing fall prevention efforts

Kurt Beschorner, Ph.D.

Human Movement and Balance Lab

University of Pittsburgh

November 18, 2020

NORA Construction Sector Council Meeting

Falls to lower Levels

Ladders are associated with:

- 15,000 non-fatal falls
- 113 fatal falls

Median of 20 days away from work for ladder-related falls

Ladders are frequently involved in fatal and disabling falls in the workplace

U.S Dol- BLS, New Data Highlight Gravity of Construction Falls, 1996: Washington, D.C.

Ladder Fall Type

Slips commonly cause occupational ladder fall events

- "Slip on rungs" was the initiating event for 14% of ladder-related fatalities¹
- "Slipped/lost balance" was the initiating event for 25% of occupational non-fatal falls ^{2,3}

¹Shepherd, G. W., Kahler, R. J., & Cross, J. (2006). Ergonomic design interventions—a case study involving portable ladders. *Ergonomics*, 49(3), 221-234.

²Smith, G. S., Timmons, R. A., Lombardi, D. A., Mamidi, D. K., Matz, S., Courtney, T. K., & Perry, M. J. (2006). Work-related ladder fall fractures: identification and diagnosis validation using narrative text. *Accident Analysis & Prevention, 38*(5), 973-980.

³López, M. A. C., Ritzel, D. O., González, I. F., & Alcántara, O. J. G. (2011). Occupational accidents with ladders in Spain: Risk factors. *Journal of Safety Research, 42*(5), 391-398.

What happens during a slip?

Impact of ergonomic design and human factors on slipping risk

Controlled foot placement

Pliner, E. M., Campbell-Kyureghyan, N. H., & Beschorner, K. E. (2014). Effects of foot placement, hand positioning, age and climbing biodynamics on ladder slip outcomes. *Ergonomics*, *57*(11), 1739-1749.

Environmental factors: restricted foot placement

Pliner, E. M., Campbell-Kyureghyan, N. H., & Beschorner, K. E. (2014). Effects of foot placement, hand positioning, age and climbing biodynamics on ladder slip outcomes. *Ergonomics*, *57*(11), 1739-1749.

Environmental factors: Ladder angle

Martin, Ellen R., Erika M. Pliner, and Kurt E. Beschorner. "Characterizing the shoe-rung friction requirements during ladder climbing." *Journal of Biomechanics* 99 (2020): 109507.

Ladder Climbing Observed in Power Plants

Human Factors: Foot and body positioning influence slip risk

Shoe Angle (°)

Body angle

CoM

Distance oetween Bos

Martin, Ellen R., Erika M. Pliner, and Kurt E. Beschorner. "Characterizing the shoerung friction requirements during ladder climbing." Journal of Biomechanics 99 (2020): 109507.

Experiment 2: Recovering from a ladder "misstep"

Human factors: Influence of grasp location on response speed

Schnorenberg, A.J., Campbell-Kyureghyan, N.H., Beschorner, K.E., 2015, Biomechanical Response to Ladder Slipping Events: Effects of Hand Placement, *Journal of Biomechanics* 48 (14), 3810-3815.

Ladder perturbation – video

Environmental factors: Ladder descent increases fall risk compared to ascent

Pliner, E. M., Seo, N. J., Ramakrishnan, V., & Beschorner, K. E. (2019). Effects of upper body strength, hand placement and foot placement on ladder fall severity. *Gait & posture*, *68*, 23-29.

Human factors: Sex and grip strength can predict recovery from a ladder

Ladder fall protection should be prioritized for individual's with lower upper body strength and during descending climbs.

Pliner, E. M., Seo, N. J., Ramakrishnan, V., & Beschorner, K. E. (2019). Effects of upper body strength, hand placement and foot placement on ladder fall severity. *Gait & posture*, *68*, 23-29.

Factors associated with greater safety

Environmental

- Unrestricted foot placement
- Non-vertical ladders (~75°)
- Extra precautions for descent
- Ladders that enable better foot contact

Human factors

- Grasping rungs instead of rails
- Keeping body weight over feet
- Maintaining level feet
- Accommodating lower upper body strength individuals

Next phase of research: Influence of individual and ladder design factors on slipping events

NIOSH: R010H011799: Predicting slips during ladder climbing: novel methods for assessing shoe-rung friction

Additional factors identified since funding that are being considered

- Ladder-to-roof transition (and vice versa)
- Base-to-fly transition during descent
- Carrying an object
- Exposure of rung surfaces to coatings (paint, tar, etc.)
- Role of footwear

Also keep on eye out for aging and ladder fall research from Erika Pliner and Stephen Lord

- Pliner, E. M., Sturnieks, D. L., & Lord, S. R. (2020). Individual factors that influence task performance on a straight ladder in older people. *Experimental Gerontology*, 111127.
- Pliner, E.M., Sturnieks, D.L., Beschorner, K.E., Redfern, M.S., Lords, S.R., Individual factors that influence task performance on a stepladder, Safety Science, in review.

Put our research into action!

- Links to full access articles are shared on:
 - LinkedIn: "Kurt Beschorner"
 - Twitter: @kurt_beschorner
 - E-mail me at beschorn@pitt.edu

Partner with us!

- We are always recruiting industry partners to help with our research
- Share stories of ladder slip and fall events (beschorn@pitt.edu)
- We will be recruiting participants in Fall, 2021.
- Benefits of being a partner:
 - Ensuring research results are relevant to your workers
 - Early access to research results
 - Flexible testing times → no interruption to work
 - Worker's get reimbursed for their time

Acknowledgements:

- NIOSH R01 OH 011799: Predicting slips during ladder climbing: novel methods for assessing shoe-rung friction
- NIOSH R21 OH 010038: Quantifying the Recovery Response and Role of Hand Strength During Ladder Falls
- NIOSH T42 OH 008672: Effects of Hand and Foot Positions on Ladder Slip and Fall Outcomes
- OSHA SH-24880-13-60-F-55: Safety and Ergonomics for Renewable Energy

Thank You!

Put our research into action!

- Links to full access articles are shared on:
 - LinkedIn: "Kurt Beschorner"
 - Twitter: @kurt_beschorner
 - E-mail me at beschorn@pitt.edu