NORA Construction Sector Council Meeting Washington, DC November 28-29, 2023

Title: NIOSH Noise Control Project

Presenter: Edward Zechmann PhD, PE, INCE Bd. Cert.

Disclaimer: The findings and conclusions in this paper are those of the author and do not necessarily represent the official position of the National Institute for Occupational Safety and Health, Centers for Disease Control and Prevention. Mention of any company or product does not constitute endorsement by the National Institute for Occupational Safety and Health, Centers for Disease Control and Prevention. In addition, citations to websites external to NIOSH do not constitute NIOSH endorsement of the sponsoring organizations or their programs or products.

Overview

- Noise is a problem in construction
- Hierarchy of Controls
- Prevention through Design (PtD)
- Sell and Buy Quiet
- Life cycle scores



Photo Credit (NIOSH)

Hearing Loss is a Problem in Several Sectors

Burden

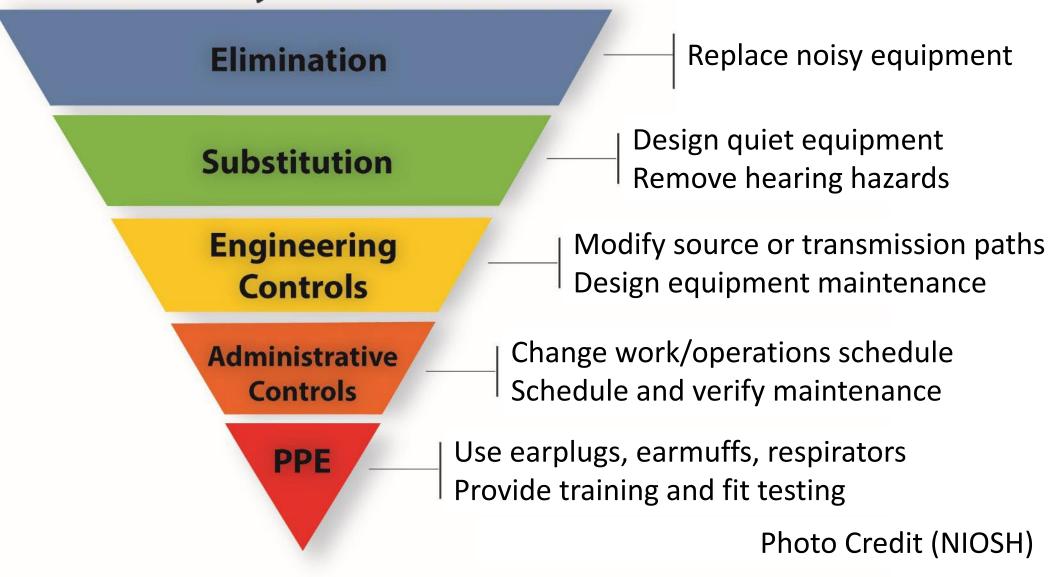
- 4.5 million construction workers exposed to hazardous noise
- 1 in 4 noise-exposed construction workers suffer Hearing Loss

Need

 Despite the earlier development of NIOSH's "Buy Quiet" campaign additional information is needed to support the routine purchase and use of quieter equipment

Impact

 A 90% reduction in noise exposure is possible for many types of power tools simply by replacing noisy equipment with quieter equipment.


Prevention through Design (PtD)

- Design out hazards to workers
- Redesign and retrofit new and existing equipment and work processes
- Prevent or reduce occupational injuries, illnesses, and fatalities
- Sell and Buy Quiet focusses on preventing noise exposure

Most Effective

Hierarchy of Controls

Least Effective

Sell and Buy Quiet

Replace the noisy tools with the quieter tools. Make sure all the important factors are considered.

	Sound Power		Average	Average
Tool Type (Number of Tools)	L_WA		Noise Exposure	Percent
	Max	Min	Reduction	Reduction
	dBA	dBA	dBA	%
Miter Saw (6)	113	103	10	90
Circular Saw (38)	113	104	9	87
Reciprocating Saw (23)	112	102	10	90
Impact Wrench (11)	111	101	10	90
Grinder (34)	109	95	14	96

Sell and Buy Quiet

Replace the noisy tools with the quieter tools.

Make sure all the important factors are considered.

	Sound Power		Average	Average
Tool Type (Number of Tools)	L_WA		Noise Exposure	Percent
	Max	Min	Reduction	Reduction
	dBA	dBA	dBA	%
Miter Saw (6)	113	103	10	90
Circular Saw (38)	113	104	9	87
Reciprocating Saw (23)	112	102	10	90
Impact Wrench (11)	111	101	10	90
Grinder (34)	109	95	14	96

Generalizing Sell and Buy Quiet is the solution!

- Hearing loss occurs and interacts simultaneously with many other factors
- All health, safety, and cost factors are considered
- SAE International Aerospace Standard AS6228
 Safety Requirements for Procurement, Maintenance and Use of Hand-held Powered Tools
 - 1. Measure the factors
 - 2. Convert factors into subscores
 - 3. Choose importance weights from 0.5 to 2 for each factor
 - 4. Sum weighted subscores yielding total life cycle scores
 - 5. Sort the power tools models by descending life cycle score

SAE AS6228 Safety Procurement Standard

- Focus on making safer, healthier, more cost-effective power tools available in the Federal supply system.
- Optimize supply management addressing noise, hand-arm vibration, physical safety, ergonomics, and other factors
- Engage safety and health professionals in procurement decisions
- Adapt procurement process for eCommerce by sorting products based on the life cycle score.
- Power tools had a \$42.8 billion global market in 2022

SAE AS6228 Safety Procurement Standard

Measured Factors	Weight	Subscore	Weighted
ivieasureu ractors	(0.5 - 2)	(1-10)	Subscore
Productivity	2	5	10
Ergonomics	2	7	14
Noise L _{WA}	1	6	6
Hand-arm vibration a_{rms}	2	7	14
Initial Purchase Cost	0.5	1	0.5
Operating cost	1	5	5
Utility Cost	0.5	5	2.5
User Acceptance	1.5	8	12
Life Cycle Score			64

Subscores: 1 is low 10 is high Weight × Subscore = Weighted Subscore Table is adapted from Zechmann 2018 Higher Life Cycle Scores are better

Overview of Life Cycle Scores

- 1) Identify the tool type for the task to be completed
- 2) Research the current state of the technology for the tool List the important factors to consider when making a purchase
- 3) Research reputable manufacturers that produce the tool List promising models of tools for data collection
- 4) Use the life cycle formula to calculate the life cycle score for each model
- 5) List the tools by descending life cycle score and select a high-scoring tool to best complete the identified task in the safest manner possible

107 dBA Photo Credit (NIOSH)

108 dBA

110 dBA

Identify the tool for the task to be completed

- Identify tasks that need to be completed by an individual piece of equipment.
- Identify the type of equipment that will complete the tasks.
- Develop a theme such as "Best affordable angular grip Battery powered leaf blower" to help refine the search.

Photo Credit (NIOSH)

Research the current state of technology

- Perform a technical information search on the type of equipment to understand the current state of the technology available.
- Global Spec and How Stuff Works are examples of technical information websites.
- Use the technical information search to identify the important factors to consider when making a purchase.
- Make a list of the most important factors to consider.

93 dBA Photo Credit (NIOSH)

Research reputable manufacturers

- Do a search to identify the manufacturers. Make a list of reputable manufacturers. Do a search to identify search engines, shopping search engines, and shopping websites. Make a list of those internet resources that include the important factor information.
- Use a search engine to find manufacturers. There are websites that have lists of manufacturers.
- There are business review websites which may be helpful for assessing manufacturers, sellers, and other companies in the business chain.

Use the life cycle formula to calculate

- Make a spreadsheet which has the important factors in the columns and has power tools the rows.
- Fill the spreadsheet with the factor data.
- Use piecewise linear, logarithmic, and exponential scaling formulae to convert the measured factors to subscores from 1 to 10.
- Identify the weighting for each factor from 0.5 to 2 based on relative importance of the factors.
- Sum the products of the weights and subscores to produce the total life cycle scores.

- Sort the list power tools by descending life cycle score.
- Choose a power tool that is close to the top of the indexed product

Impact Wrench	Energy	Reverse	L_{W}	L _p	a _{rms}	Cost
Mask Number	System	Torque Nm	dBA	dBA	m/s ²	USD
1	Battery	1491	100	89	12.2	433
2	Pneumatic	1760	103	92	7.7	405
3	Pneumatic	1760	103	92	9.0	340
4	Pneumatic	1302	105	94	12.0	214
5	Pneumatic	610	106	95	12.1	187
6	Battery	2040	106	95	17.0	476
7	Battery	2040	106	95	17.0	568
8	Pneumatic	1356	107	96	8.7	525
9	Pneumatic	1100	108	97	9.6	243
10	Pneumatic	678	109	98	16.0	79

Jack Hammers – Testing

Test Setup

No Controls

All Controls

Jack Hammers - Noise Control Data

- Available noise control solutions
 - ✓ Quiet jack hammer with built in mufflers
 - ✓ Weighted jacket that covers the bottom
 - ✓ Lead jacket over the top
 - ✓ Constrained layer damped chisel

Preliminary data shown below

	No Controls	All controls	Noise
Jack Hammer	L_W	L_W	Reduction
Mask Number	dBA	dBA	dBA
1	117	108	9
2	114	113	1
3	115	111	3
4	119	116	3

Framing Nailers - Lack of Noise Data

EN 12549:1999 is the standard for measuring fastener tool noise

Lack of manufacturer data

- Sound power data was NOT found on US manufacturers websites or manuals.
- Sound power data was found on European manufacturers websites and manuals.

Problems

- A-weighted sound power does not fit the hearing loss model sufficiently well for impulsive noise
- Sound power is confused with output power and input power
- Not intuitive requires some education

Future Work

- Further develop noise controls for Jack Hammers
- Publish Life Cycle Scores on Impact Wrenches, Leaf Blowers, and Light Towers
- Estimate the Life Cycle Scores for Framing Nailers
- Develop a better noise metric for impulsive noise
- Publish a Blog on "Sell and Buy Quiet"
- Publish a Blog on "Life Cycle Scores"
- Publish a journal article on calculating Life Cycle Scores

Acknowledgements

Pittsburgh Research Mining Division

 Support for testing jack hammers, leaf blowers, and impact wrenches

Timothy Beck

Jacob Carr

Jason Driscoll

Yousef Elmashae

Johnathan Hrica

Brandin Lambie

Curtis Robinson

Lincan Yan

Cincinnati Division of Field Studies and Engineering

 Support for data collection and testing a light tower, jack hammers, leaf blowers, and impact wrenches

David Byrne

Wei Gong

Curtis Orme

Todd Painter

Shawn Ubrey

Questions

- Noise Controls
- Prevention Through Design (PtD)
- Sell and Buy Quiet
- Life Cycle Scores SAE AS6228

- Edward Zechmann
- cri6@cdc.gov
- 513-533-8115