

University of Massachusetts Lowell

The construction painters' exposure to chemical mixtures, health implications, and opportunities for disease prevention

Dhimiter Bello, Sc.D., MSc. Anila Bello, Sc.D., MSc.

and the research team (P Patel, K Biswas, Y Xu, L Chanetsa, M Mellette, etc.)

Webinar CPWR - The Center for Construction Research and Training (CPWR)

January 28th 2025

Presentation Overview

- Industrial metal structure coating systems
 - Motivation
 - Documenting and prioritizing chemicals of concern and endpoints in coatings
- Amine hardeners in epoxy systems targets and exposures
- Urinary biomonitoring data among industrial painters
 - Metals
 - PFAS
- Urinary effect biomarkers
 - Oxidative stress
 - Kidney injury
 - Heat stress

Ongoing Project: Developing a national roadmap to reduce per- and polyfluoroalkyl (PFAS) exposures among construction painters and allied trades

A decade of research on chemical exposures in construction

Reactive Chemical Systems- Two main cohorts

- Industrial Painters: Metal Structure Coating
- Insulation Workers: Spray Polyurethane Foams Insulation (SPF)

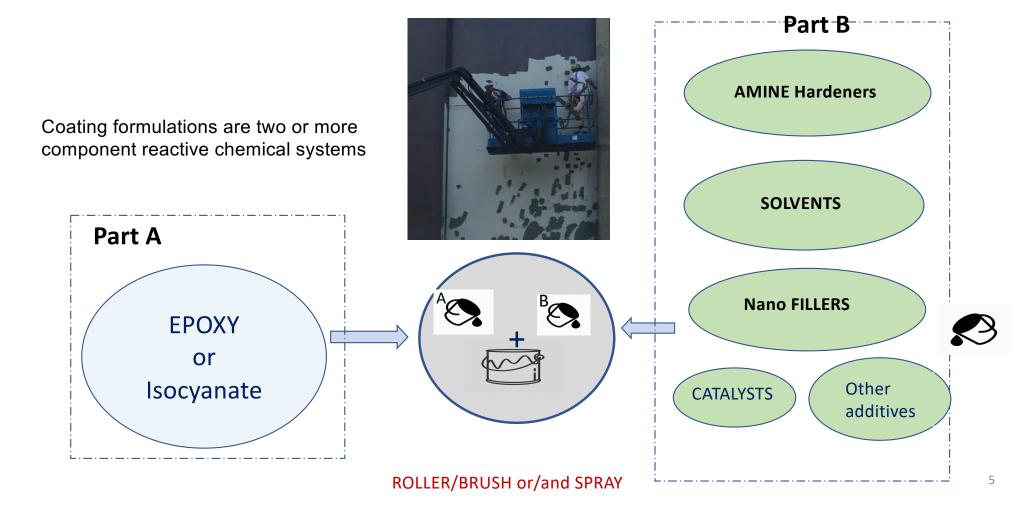
Part A: Isocyanate and Epoxy resins *Part B:* Amine catalysts & hardeners, flame retardants, solvents, and nanofillers

Goal: To minimize worker exposure to chemicals in construction through:

Documenting exposure levels, work practices, and existing controls
 Developing data-driven recommendations

Motivation: Why painters ?

- Occupational exposure as a painter has been classified by IARC as a Group 1 – Known Human Carcinogen (Mon vol 47, 1989; reaffirmed in 2010)
 - Increased risk of *lung and urinary bladder cancers*
 - Complex exposures agents responsible partly understood
- Other major concerns
 - Allergic contact dermatitis (hands, forearms, face)
 - Respiratory sensitization and asthma (isocyanates, epoxies)
- Limited health effects data among US construction painters!



Contact dermititis on hand

Figure credit: CPWR report on epoxy resins in construction

Documenting and prioritizing chemicals of concern in coatings

Metal Structure Coatings Application

Coating Products: Reactive chemical systems - Part A

Webinar 1: Exposures and urinary biomonitoring of aliphatic isocyanates in construction metal structure coating (March 2019)

Webinar 2: Occupational exposures to epoxy resins among construction painters: Methods to monitor exposures and urinary biomarkers (June 2021)

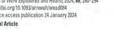
Characterization and Quantitation of Personal Exposures to Epoxy Paints in Construction Using a Combination of Novel Personal Samplers and Analytical Techniques: CIP-10MI, Liquid **Chromatography–Tandem Mass Spectrometry** and Ion Chromatography

os and Health, 2020, 1-15

Original Article

BOHS

doi: 10.1093/anmweh/wxaa138


Yalong Xue,¹ Anila Bello² and Dhimiter Bello^{2,*,4}

Annais of Work Expo

Department of Chemistry, Kennedy College of Sciences, University of Massachusetts Lowell, Olney Hall 525, One University Ave. Lowell, MA 01854, USA; "Department of Public Health, Zuckerberg College of Health Sciences, University of Massachusetts Lowell, 61 Wilder St., 0' Leary 5400, Lowell, MA 01854, USA "Department of Biomedical and Nutritional Sciences, Zuckerberg Collage of Health Sciences, University of Massachusetts Lowell, 883 Broadway Street, Dugan Hall 108C, Lowell, MA 01854, USA *Author to whom correspondence should be addressed. tel: +1-978-934-3343; e-mail: Dhimiter_Bello@uml.edu

Submitted 17 June 2020; revised 17 October 2020; editorial decision 24 November 2020; revised version accepted 29 December 2020

Evaluation of disposable protective garments against epoxy resin permeation and penetration from anti-corrosion coatings

Michael P. Mellette¹, Dhimiter Bello¹²⁰, Anila Bello¹⁰, Yalong Xue³, Michael Yost⁴, Susan Woskie¹

Department of Public Health, University of Massachusetts Lowell, One University Avenue, Lowell, MA 01854, United States: ²Department of Biomedical and Nutritional Sciences, University of Massachusetts Lowell, 883 Broadway Street, Dugan 108-C, Lowell, MA 01854, United States ³Department of Chemistry, University of Massachusetts Lowell, 1 University Avenue, Lowell MA 01854, United States,

mational Journal of Hygiene and Environmental Health 226 (2020) 113495 Contents lists available at ScienceDirect International Journal of Hygiene and **Environmental Health** journal homepage: www.elsevier.com/locate/(ih

Exposures and urinary biomonitoring of aliphatic isocyanates in construction metal structure coating

Anila Bello^{a,e}, Yalong Xue^b, Rebecca Gore^c, Susan Woskie^a, Dhimiter Bello^d

* University of Massachusetts Lowell, Department of Public Health, Zuckerberg College of Health Sciences, Lowell, MA, 01854, USA

^b University of Massachusetts Lowell, Department of Chemistry, Kennedy College of Sciences, Lowell, MA, 01854, USA ^c University of Massachusetts Lowell, Department of Biomedical Engineering, Lowell, MA, 01854, USA

⁴University of Massachusetts Lowell, Department of Biomedical and Nutritional Sciences, Zuckerberg College of Health Sciences, Lowell, MA, 01854, USA

Urinary biomonitoring of occupational exposures to Bisphenol A Diglycidyl Ether (BADGE) - based epoxy resins among construction painters in metal structure coating

Anila Bello", Yalong Xue", Dhimiter Bello",

¹ University of Massachusens Lowell, Department of Public Health, Zuckerberg College of Health Sciences, Lowell, MA 01854, United State

^b University of Mazachusetta Lowell, Department of Chemistry, Kennedy College of Sciences, Lowell, MA 01854, United States ^c University of Mazachusetta Lowell, Department of Biomedical and Nutritional Sciences, Zuckerberg College of Health Sciences, Lowell, MA 01854, United States

Crush his

Coating Products: Reactive chemical systems - Part B

We reviewed coating products approved by the <u>Northeast Protective Coating Committee</u> (<u>NEPCOAT</u>) for use in steel bridges in New England

AMERICAN JOURNAL OF INDUSTRIAL MEDICINE

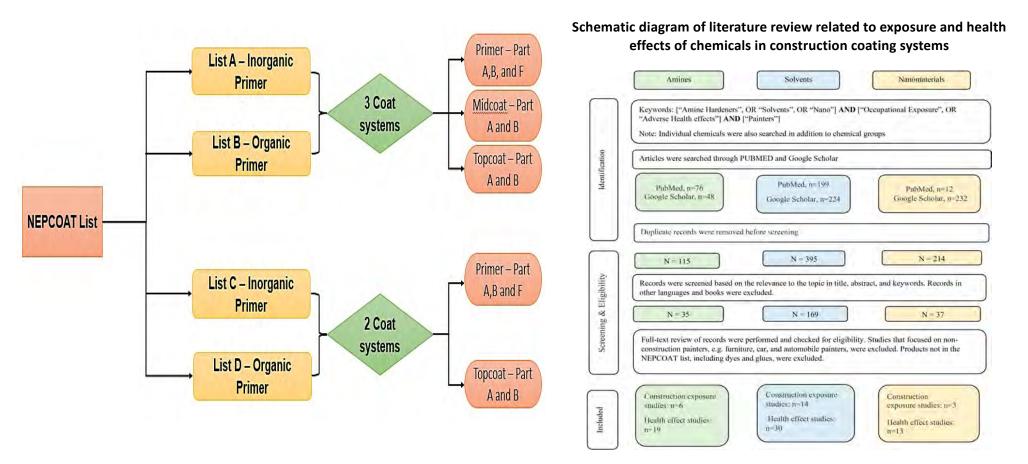
INCORPORATING ENVIRONMENTAL AND OCCUPATIONAL HEALTH

REVIEW ARTICLE 🔂 Open Access 💿 😧 😒

Identifying and Prioritizing Hazardous Chemicals in Construction Metal Structure Coating Systems: A Roadmap for Data-Driven Disease Prevention

Paridhi Patel, Dhimiter Bello 🔀, Anila Bello

First published: 03 December 2024 | https://doi.org/10.1002/ajim.23677


Objectives:

- Document the chemistry and hazardous ingredients in Part B of reactive systems
- Identify major data and knowledge gaps related to occupational exposures, biomonitoring of Part B.
 - To prioritize ingredients/chemical groups for subsequent exposure and health effects studies

NEPCOAT coating systems

Reviewed chemistries, exposure data and chemical toxicology

Chemistry of coating systems – A systematic review and database

								I	
- L - 1	Zinc Clad 4100 Organic Zinc Rich						1		
1		Part A			Part B		Part F		Information available
		Chemical Name	Weight by %	Chemica	l Name	Weight by %	Chemical Name	Weight by %	
		Epoxy Polymer	≥25 - ≤50		nixed isomers	>25 - <34	Zinc Powder	100	from SDSs!
		Methyl Ethyl Ketone	≥10 - ≤25		e Silica, respirable	≥10 - <u><</u> 25			1011 2022
		Methyl N-Amyl Ketone	≥10 - ≤23	powder Dhonol is	obutylenated	≥10 -≤25	-		
		Xylene, mixed isomers	≤13	methylsty		210 -525			
		1,2,4-Trimethylbenzene		Polyamid	oamine	≥10 - <u><</u> 25			 42 chemicals in
L .		Light Aromatic Hydrocarbons	≤3	Ethyl ben	zene	<u><</u> 10	1		
		Ethyl Benzene	≤2.7	Tri(dimeth	ylaminomethyl)phenol	<u><</u> 1.9	1		
L .		1.3.5-Trimethylbenzene			hatic Hydrocarbon	<u><</u> 0.3	1		primers
L .		Cumene	<1	Solvent					princis
			<1	Fatty Acid	I Amine	<u><</u> 0.3			
1			1	Toluene	abatic Columnt	≤0.3	-		 32 in mid coat
1				,	phatic Solvent e Tetramine	<u><</u> 0.3 <u><</u> 0.3	4		
1				Inethylen	e reuamine	50.3]		
1	Macropoxy 646 Fast								 51 in topcoat
	Cure Epoxy	+				+			$\frac{1}{10}$
		Part	A]			Part B			
		Chemical Name	N N	eight by %	Chemical Name		Weight by 9	16	
		Crystaline Sillica, respira	ble <u>></u>	0- <u><</u> 75	Titanuim Dioxide		<u>>25 - <</u> 505		
		powder			p-Chlorobenzotriflu	ioride	<u>>10 - <25</u>		
		Epoxy Polymer		.0 - <u><</u> 25	Phenol, isobutylen	ated methylstyre	enated ≥10 - ≤25		
		Methyl Isobutyl Ketone	<u><</u>						
		Xylene	<	5	Xylene Polamide		<u><</u> 3 <10		
					Talc		<10		
					Ethylbenzene		<0.3		
					Triethylene Tetram	ine	<1		
					2-Ethyl-2-(hydrox)		ppanediol <0.3	-	
1									
┢	Acrolon 218 HS						I		
	Acrolon 218 HS	Part	A			Part B			
		Chemical Name		eight by %	Chemical Name	Part B	Weight by %		12 CAS No - Amines
			w	eight by %	Chemical Name Titanium Dioxide	Part B	Weight by %		12 CAS No - Amines
		Chemical Name Hexamethylene Diisocyan Hexamethylene Diisocyan	W ate (max) <			Part B			
		Chemical Name Hexamethylene Diisocyan	W ate (max) <		Titanium Dioxide	Part B	≥10 - <u><</u> 25		
		Chemical Name Hexamethylene Diisocyan Hexamethylene Diisocyan	W ate (max) <		Titanium Dioxide Crystalline Sillica		≥10 - ≤25 ≥10 - ≤25		12 CAS No - Amines 28 CAS No - Solvents
		Chemical Name Hexamethylene Diisocyan Hexamethylene Diisocyan	W ate (max) <		Titanium Dioxide Crystalline Sillica n-Butyl Acetate 2-methoxy-1-methyle Methyl Ethyl Ketone		>10 - <25 >10 - <25 <8.4 <4.9 <4.9		28 CAS No - Solvents
		Chemical Name Hexamethylene Diisocyan Hexamethylene Diisocyan	W ate (max) <		Titanium Dioxide Crystalline Sillica n-Butyl Acetate 2-methoxy-1-methyle Methyl Ethyl Ketone Xylene	thyl acetate	≥10 - ≤25 ≥10 - ≤25 ≤8.4 ≤4.9 ≤4.9 ≤5		28 CAS No - Solvents
		Chemical Name Hexamethylene Diisocyan Hexamethylene Diisocyan	W ate (max) <		Titanium Dioxide Crystalline Sillica n-Butyl Acetate 2-methoxy-1-methyle Methyl Ethyl Ketone Xylene Heavy aromatic naph	thyl acetate	≥10 - ≤25 ≥10 - ≤25 ≤8.4 ≤4.9 ≤4.9 ≤5 ≤5 ≤1.5		28 CAS No - Solvents
		Chemical Name Hexamethylene Diisocyan Hexamethylene Diisocyan	W ate (max) <		Titanium Dioxide Crystalline Silica n-Butyl Acetate 2-methoxy-1-methyle Methyl Ethyl Ketone Xylene Heavy aromatic naph Ethylbenzene	thyi acetate	≥10 - ≤25 ≥10 - ≤25 ≤8.4 ≤4.9 ≤4.9 ≤5 ≤1.5 <1		
		Chemical Name Hexamethylene Diisocyan Hexamethylene Diisocyan	W ate (max) <		Titanium Dioxide Crystalline Silica n-Butyl Acetate 2-methoxy-1-methyle Methyl Ethyl Ketone Xylene Heavy aromatic naph Ethylbenzene Heavy aliphatic solve	thyl acetate	≥10 - ≤25 ≥10 - ≤25 ≤8.4 ≤4.9 ≤4.9 ≤5 ≤1.5 <1 <1		28 CAS No - Solvents 19 - Nano/particulate
		Chemical Name Hexamethylene Diisocyan Hexamethylene Diisocyan	W ate (max) <		Titanium Dioxide Crystalline Sillica n-Butyl Acetate 2-methoxy-1-methyle Methyl Ethyl Ketone Xylene Heavy aromatic naph Ethylbenzene Heavy aliphatic solve Light Aliphatic Hydro	thyl acetate	≥10 - ≤25 ≥10 - ≤25 ≤8.4 ≤4.9 ≤4.9 ≤5 ≤1.5 <1 <1 ≤1.5 <1 ≤1.5		28 CAS No - Solvents 19 - Nano/particulate
		Chemical Name Hexamethylene Diisocyan Hexamethylene Diisocyan	W ate (max) <		Titanium Dioxide Crystalline Silica n-Butyl Acetate 2-methoxy-1-methyle Methyl Ethyl Ketone Xylene Heavy aromatic naph Ethylbenzene Heavy aliphatic solve Light Aliphatic Hydroo Naphthalene	thyi acetate tha nt carbon	$\begin{array}{c c} >10 - \leq 25\\ >10 - \leq 25\\ \leq 8.4\\ \leq 4.9\\ \leq 5\\ \leq 1.5\\ \leq 1.5\\ < 1\\ < 1\\ < 1\\ < 0.3\\ \leq 0.3\\ \end{array}$		28 CAS No - Solvents
		Chemical Name Hexamethylene Diisocyan Hexamethylene Diisocyan	W ate (max) <		Titanium Dioxide Crystalline Sillica n-Butyl Acetate 2-methoxy-1-methyle Methyl Ethyl Ketone Xylene Heavy aromatic naph Ethylbenzene Heavy aliphatic solve Light Aliphatic Hydro Naphthalene Bis(pentamethyl-4-pi)	thyi acetate tha nt carbon	≥10 - ≤25 ≥10 - ≤25 ≤8.4 ≤4.9 ≤5 ≤1.5 <1 <1 ≤0.3 ≥0.3		28 CAS No - Solvents 19 - Nano/particulate fillers
		Chemical Name Hexamethylene Diisocyan Hexamethylene Diisocyan	W ate (max) <		Titanium Dioxide Crystalline Silica n-Butyl Acetate 2-methoxy-1-methyle Methyl Ethyl Ketone Xylene Heavy aromatic naph Ethylbenzene Heavy aliphatic solve Light Aliphatic Hydroo Naphthalene	thyl acetate tha nt carbon peridyl)sebacate	$\begin{array}{c c} >10 - \leq 25\\ >10 - \leq 25\\ \leq 8.4\\ \leq 4.9\\ \leq 5\\ \leq 1.5\\ \leq 1.5\\ < 1\\ < 1\\ < 1\\ < 0.3\\ \leq 0.3\\ \end{array}$		28 CAS No - Solvents 19 - Nano/particulate

Skin and respiratory sensitizers present in coating products

- 14 Skin sensitizers
 - 9 amines
 - 4 solvents
 - 1 nanofiller
- Amines: Class I potent sensitizers
- Other construction products
 - e.g. glues
 - 13.1M workers handle epoxy resins in the USA (ACC)
 - 28k bridges undergoing repair

Nr.	Chemicals	Chemical group	CAS Number	Site/Organ	Skin potency category ^a	GHS classification ^b	References	Layer ^g
1	Bis(pentamethyl-4-piperidyl) sebacate / Bis(1,2,2,6,6-pentamethyl-4- piperidyl) sebacate	Amine hardener	41556-26-7	Skin	NA	Skin sensitization. 1A	ECHA ^e , PubChem ^d	Т
2	Polyamidoamine (PAMAM)	Amine hardener	68082-29-1	Skin	HS	Skin sensitization.1A	ECHA, PubChem, IVDK 2016 ²⁷ , and DGUV 2021 ⁶⁹	P, M
3	2,4,6-Tris(dimethylaminomethyl) phenol (Tris-DMP)	Amine hardener	90-72-2	Skin	GMS	NA	RøMyhr et al. 2006 ³² , Aalto-Korte et al. 2014 ³³ , Kanerva et al. 1996 ⁵⁷ , IVDK ^e 2016 ²⁷ , DGUV ^f 2021 ⁶⁹	P, M
4	Pentamethyl piperidyl sebacate / Methyl 1,2,2,6,6-pentamethyl-4- piperidyl sebacate	Amine hardener	82919-37-7	Skin	NA	Skin sensitization. 1	ECHA, PubChem	Т
5	1,2-Diamino cyclohexane (DACH)	Amine hardener	694-83-7	Skin	NA	Skin sensitization. 1A	ECHA, PubChem	Layer – P, M
6	Triethylene tetramine (TETA)	Amine hardener	112-24-3	Skin	HS	Skin sensitization. 1	ECHA, PubChem, IVDK 2016 ²⁷ , DGUV 2021 ⁶⁹	P, M
7	Triethoxysilyl Propylamine / (3-Aminopropyl)triethoxysilane (TESPA)	Amine hardener	919-30-2	Skin	GMS	Skin sensitization. 1	ECHA ^a , PubChem ^b , IVDK 2016 ²⁷ , DGUV 2021 ⁶⁹	T
8	Fatty Acid Amine (FAA)	Amine hardener	85711-55-3	Skin	NA	Skin sensitization. 1A	ECHA, PubChem	P, M
9	Polyamide (PAmD)	Amine hardener	68410-23-1	Skin	U	Skin sensitization.1A	ECHA, PubChem, IVDK 2016 ²⁷ , DGUV 2021 ⁶⁹	М
10	4-Morpholinecarboxaldehyde	Solvent	4394-85-8	Skin	NA	Skin sensitization.1B	ECHA, PubChem	Т
11	Polycarboxylic acid ester	Solvent	91001-64-8	Skin	NA	Skin sensitization, 1	ECHA, PubChem	Р
12	Dibutyltin bis (2,4-pentadionate) / Dibutyltin bis(acetylacetonate)	Solvent	22673-19-4	Skin	NA	Skin sensitization.1	ECHA, PubChem	Р
13	Dibutyltin dilaurate	Solvent	77-58-7	Skin	NA	Skin sensitization. 1	ECHA, PubChem	Р
14	Wollastonite	Nanomaterial	13983-17-0	Respiratory	NA	Respiratory sensitization, 1	ECHA, PubChem	Т

^a Skin potency category derived from evidence found from human health studies and the local lymph node assay ^{27,69}

HS → SHS – High sensitizing potency with limited data indicating tendency of chemical to be of very high sensitizing potency.

HS - High sensitizing potency.

Patel et al 2024 AJIM 11

Carcinogens identified in Part B of coating systems: IARC classification

Literature:

- 2 group 1 carcinogens
- 7 group 2B carcinogens
- No amines in the IARC list

 2 Amines identified as potential <u>carcinogens &</u> associated with stomach cancer (Shah et al. 2020)*

- 1,2 Diamino cyclohexane
- Polyamide

Nr.	Chemicals by group	CAS Number	IARC classification ^a	Type of cancer ^b
1	Methyl isobutyl ketone	108-10-1	Group 2B (IARC monographs 101, 2013)	Liver and kidney
2	Ethyl benzene	100-51-6	Group 2B (IARC monographs 77, 2000)	Lung and liver
3	Naphthalene	91-20-3	Group 2B (IARC monographs 82, 2002)	Kidney, olfactory neuroblastoma, and lung
4	Ethanol	64-17-5	Group 1 (IARC monographs 96, 2012)	Oral cavity, pharynx, larynx, esophagus, liver, colorectum and female breast
5	4-Chlorobenzotrifluoride	98-56-6	Group 2B (IARC monographs 125, 2020)	Lung, liver, and thyroid
6	Cumene	98-82-8	Group 2B (IARC monographs 101, 2013)	Liver, lung and kidney
7	Crystalline Silica	14808-60-7	Group 1 (IARC monographs Sup ^c 7 68, 100C, 2012)	Lung, esophagus, stomach and kidney
8	Titanium Dioxide	13463-67-7	Group 2B (IARC monographs 93, 2010)	Lung
9	Carbon Black	1333-86-4	Group 2B (IARC monographs 93, 2010)	Lung

^aInternational Agency for Research on Cancer (IARC) classification.⁷⁰

Group 1 - Carcinogens to humans

Group 2A - Probably carcinogenic to humans

Group 2B - Possibly carcinogenic to humans

Group 3 - Not classifiable as to its carcinogenicity to humans

^b <u>The</u> type of cancer has been determined based on human and animal studies included in the IARC monographs. ^c Sup - Supplemental

*Aromatic amines exposures were 2.92 (95% CI: 1.36–6.26) gastric cancer.

Shah SC et al." Occupational exposures and odds of gastric cancer: a StoP project consortium pooled analysis". Int J Epidemiol. 2020 Apr 1;49(2):422-434

Other possible health effects

TABLE 4 | Existing occupational exposure limits and other health effects of Part B ingredients.

Chemicals by group	CAS number	NIOSH REL"	OSHA PEL ^b	ACGIH TLV	Other health endpoints	References for health endpoints
Amines						1
Triethylene tetramine	112-24-3	NA	NA	NA	Developmental toxicity Teratogenesis Genotoxicity	Korhenen et al. [64], Rochelle et al. [65], Cohen et al. [68], Leung [66]
Solvents						
Methyl N-amyl ketone Methyl ethyl ketone Methyl isobutyl ketone	110-43-0 78-93-3 108-10-1	TWA 100 ppm (465 mg/m ³) TWA 200 ppm (590 mg/m ³) ST 300 ppm (885 mg/m ³) TWA 50 ppm (205 mg/m ³) ST 75 ppm (300)	TWA 100 ppm (465 mg/m ³) TWA 200 ppm (590 mg/m ³) TWA 100 ppm (410 mg/m ³)	TWA 50 ppm (233) TWA 75 ppm STEL 150 ppm TWA 20 ppm (82 mg/m ³) STEL 75 ppm (307 mg/m ³)	Hepatotoxicity	PubChem, ^d ECHA ^e
Ethyl benzene Benzyl alcohol	100-41-4 100-51-6	TWA 100 ppm (435 mg/m ³) ST 125 ppm (545 mg/m ³)	TWA 100 ppm (435 mg/m ³)	TWA 20 ppm	Neurotoxicity Ototoxicity	Lee et al [50], Pollastrini et al. 1994 [78], The Nordic Expert Group [79]
Xylene, mixed isomers	1330-20-7 108-38-3 106-42-3	TWA 100 ppm (435 mg/m ³) ST 150 ppm (655 mg/m ³)	TWA 100 ppm (435 mg/m ³)	TWA 20 ppm	Neurotoxicity Reproductive toxicity Kidney toxicity Gastrointestinal injury Ototoxicity	NIOSH [80], Jang et al. [48], Lee et al. [50], Lim et al. 2023 [81], The Nordic Expert Group [79]
Toluene	108-88-3	TWA 100 ppm (375 mg/m ³) ST 150 ppm (560 mg/m ³)	TWA 200 ppm	TWA 20 ppm	Neurotoxicity Genotoxicity Kidney toxicity Ototoxicity	NIOSH [80], Jang et al. [48] Tokunga et al. [77], Lim et al. [81], The Nordic Expert Group [79]
1,3,5-Trimethylbenzene 1,2,4-Trimethylbenzene 1,2,3-Trimethylbenzene	108-67-8 95-63-6 526-73-8	TWA 25 ppm (125 mg/m ³)	None	NA	Neurotoxicity	PubChem, ECHA
N-butyl acetate, t-Butyl acetate	123-86-4 540-88-5	TWA 150 ppm (710 mg/m ³)	TWA 150 ppm (710 mg/m ³)	TWA 50 ppm (238 mg/m ³)	Neurotoxicity Hepatotoxicity	PubChem, ECHA

Patel et al 2024 AJIM

Common endpoints

- Neurotoxicity
- Hepatotoxicity
- Nephrotoxicity (kidney)
- Ototoxicity
- Reproductive tox
- Genotoxicity
- GI toxicity
- Cardiovascular toxicity
- Lung fibrosis / silicosis
- COPD

(Continues)

Exposure and urinary biomonitoring

- Workplace observations & products analysis
- Inhalation exposures
- Skin exposures
- Simultaneous assessment of urinary biomarkers pre- and post-shift
 - Specific gravity and creatinine adjustment
 - Chemical analysis exposure and effect markers
 - Epoxy biomarkers
 - Isocyanate biomarkers
 - Metals
 - PFAS
 - Oxidative stress markers
 - Kidney injury biomarkers
 - Heat stress

Workplace exposure and biomonitoring work

Activity	Site visits	Number of samples		
		Air	Glove pairs	Urine ¹
 <u>Spray Polyurethane Foam, SPF</u> Retrofit; new construction; injection 	16	41 personal 43 area	37	87
• <u>SPF trimming</u>	2	10	n/a	5
Metal structure coatings ISOCYANATE-based mid- or top-coats Bridges; Tanks; Wind turbines	10	25 personal 7 area	31	53
EPOXY-based mid-coat in bridges	4	10	18	31
Floor coating, isocyanate based	3	6	5	8
Total	35	142	88	184

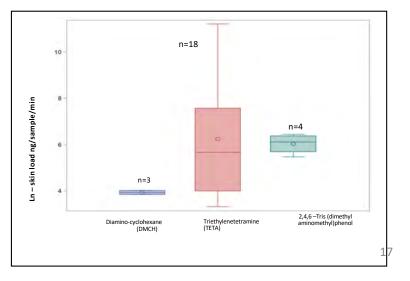
¹ Includes pre-shift and post-shift urine samples

Targeted quantitation of amine hardeners in coating systems, preliminary data

Nr	Chemical Name	Abbreviation	Application	CAS Nr	Concentration in bulk product (% by weight)	Structure
1	Triethoxysilyl Propylamine	TESP	Topcoat	919-30-2	≥50 - <u>></u> 90	Hycoo
2	Polyamidoamine	PAdAm	Primer	68082-29-1	<u>≥</u> 10 - <u><</u> 25	
3	Aminopropyl trimethoxysilane	APTMS	Topcoat	13822-56-5	≥10 - <u><</u> 25	
4	Polyoxypropylene diamine	POPD	Midcoat & Primer	9046-10-0	2.5 -<10	NH2 HgC CH5
5	Polyamide	PAmD	Midcoat	68410-23-1	10.01	
6	Tri (dimethylaminomethyl) phenol	TdMAmPh	Midcoat	90-72-2	1.0 - 10	
7	Diaminocyclo hexane	DMCH	Midcoat	694-83-7	1.0 -<10	NH ₂
8	Cycloaliphatic Amine	CAM	Midcoat	Trade Secret	1.0 -< 2.5	
9	Triethylene Tetramine	ΤΕΤΑ	Midcoat & Primer	112-24-3	<u>≤</u> 0.3 - 0.64	H _N N
10	Fatty Acid Amine	FAA	Primer	85711-55-sc3	<u><</u> 0.3	

Amine Hardeners in Epoxy Coatings - Inhalation and dermal exposure

#	Chemical Name	Abb.	CAS
1	2,4,6-Tris(dimethyl- amiomethyl) phenol)	TdMAmPh [*]	90-72-2
2	1,2-Diaminocyclohexane	DMCH*	694-83-7
3	Triethylene Tetramine ²	TETA [*]	112-24-3
4	3-(Triethoxysilyl)-propylamine	TESP	919-30-2
5	(3-Aminopropyl)- trimethoxysilane	APTMS	13822-56-5
6	Fatty acids C18-unsatd dimers polymers with tall-oil fatty acids and triethylenetetramine	PAdAm	68082-29-1
7	Poly (propylene glycol) bis(2- aminopropyl ether)	POPD	9046-10-0


Airborne exposure to amines

2 amines detected (lower % detected compared to SPF up to 23-42 % of samples)

There are no occupational standards related to these amines!

Dermal exposures

- 3 amines detected in glove samples(11-52 % of samples)

*Detectable amines

Blue colored amines are known sensitizers

Urinary metals	% detects		Coating	Coating (n=78)			
-		Pro	e (n=37)	Po	st (n=41)		
		GM (GSD)	Range	GM (GSD)	Range		
Titanium (μg/L)	99.3	164.6 (2.5)	171.5 - 287.7	87.2 (5.2)	115.3 - 200		
Vanadium (µg/L)	25.3		0.2 - 0.3	M 0.2	0.1 - 0.3		
Chromium (µg/L)	2.7			•			
Manganese (µg/L)	24.0	M 0.6	0.3 - 1.4	M 1	0.7 - 2.2		
Iron (μg/L)	83.3	19.6 (17.1)	40.2 - 218.9	28 (7.8)	47.4 - 112.7		
<mark>Cobalt</mark> (μg/L)	80.0	0.2 (5.2)	0.2 - 0.7	0.3 (4.1)	0.4 - 1.2		
Nickel (µg/L)	62.0	1.6 (20.2)	3.9 - 14.6	2.1 (14.5)	5.4 - 10.4		
Copper (µg/L)	98.7	19.3 (2.1)	18.8 - 29.6	22 (2.3)	23 - 34.1		
Zinc (μg/L)	100.0	683 (2.6)	718.4 - 1,117.0	717.2 (3.8)	846.9 - 1,254		
Arsenic (µg/L)	83.3	13.2 (7.5)	17.6 - 94.4	16.6 (7.2)	27.9 - 96.2		
Molybdemun (µg/L)	98.0	62.2 (3)	64.1 - 136.2	59.4 (6.1)	74.8 - 132.5		
Cadmium (μg/L)	100.0	0.6 (2.1)	0.5 - 1	0.7 (2.2)	0.7 - 1.3		
Tin (μg/L)	84.7	0.6 (9.7)	1.3 - 2.8	1.7 (15.3)	7.9 - 36.7		
Antimony (μg/L)	71.3	0.1 (6.9)	0.2 - 0.4	0.2 (6.2)	0.3 - 0.5		
Cerium (µg/L)	50.7	<0.01 (17)	<0.01 - 0.3	<0.01 (15.2)	<0.01 - 0.4		
Lead (µg/L)	36.6	M 5.5	4.6 - 13.8	M 8.3	7.6 - 15.5		
<mark>Mercury</mark> (μg/L)	11.3	-	-	-	-		
Boron (g/L)	98.0	1.52 (2.4)	1.5 - 2.6	1.3 (4.2)	1.6 - 2.8		
Magnesium (g/L)	100.0	102.35 (1.9)	99.8 - 145.1	84.5 (2.1)	86.4 - 124.6		
Aluminium (µg/L)	100.0	107 (2.4)	3.2 - 431.9	148.7 (2.4)	148.2 - 277.3		
Calcium (g/L)	100.0	196.73 (2.1)	186.3 - 331.9	131.5 (2.3)	136.5 - 215.2		

Urinary levels of metals in coating workers

- Zinc, Aluminum, Copper, and Arsenic urinary levels
 - Significantly higher in coating than SPF workers
- Metals multiple present in coating systems:
 - Zn/ZnO / FeOx/ TiO2/ SiO2/ Sn/Mg (talk)/Ca
 - Alumina
- Potential exposure to lead paints and steel (Ni, Co, Mn, Mo) during abrasive blasting
- Comparison with the general population, BEIs, and clinical guidance values are in progress.

PFAS in construction

A wide range of materials in the construction industry

Limited data on PFAS content and often proprietary! SDS do not report PFAS!!!

- Concrete mixtures
- Tiles
- Floor waxing
- Wood sealants
- Adhesives used in roofing, flooring, and carpeting
- Metal structure coating products

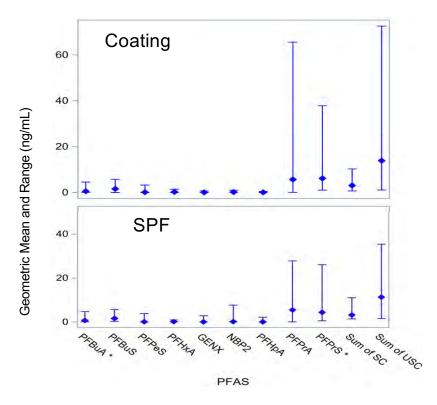
Healthy Building Network report

- 94 Paints from 8 major manufacturers
- 65% of the paints and coatings market share in North America
- 50% of paints contained Total Fluorine (maker for PFAS) at concentrations 42-688 ppm.
- Specific PFAS are not known but a recent report shows current formulations contain short–chain PFAS

PFAS in coating products – pilot findings

Product		PFAS concentrations (ug/G, ppm)						
	PFPrA	PFBuS	PFBuA	GenX				
SPF 1	LOD	249.0	23.5	4.5				
SPF 2	70.0	127.0	17.5	2.5				
Coating 1	LOD	70.4	15.7	3.9				
Coating 2	605.0	293.0	16.6	6.1				
Coating 3	LOD	309.0	16.1	6.6				
Coating 4	348.0	289.0	14.9	2.8				
Coating 5	LOD	304.0	17.1	7.3				
Coating 6	LOD	306.0	15.4	5.0				
Coating 7	LOD	335.0	16.6	7.1				

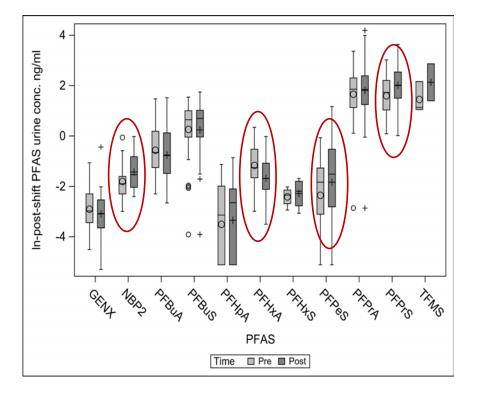
- LC-ESI-MS/MS 49 PFAS
- Four PFAS found routinely in several products at sampled sites



PFAS in urine of construction workers -

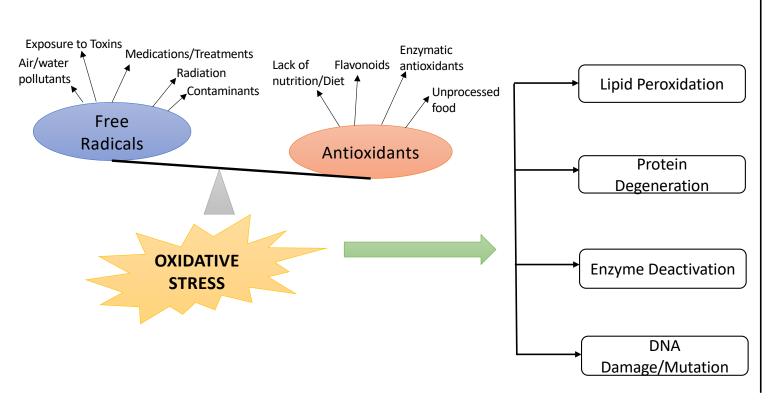
LC-ESI-MS/SM method - 49 PFAS

Chemical Name	Acronym	Formula	CAS Number	Octanol-water partition constant (log Kow)	Boiling point	Half life in humans
		Ultra-short chai	n			
Pentafluoropropionic acid (C3)	PFPrA	F F GH	422-64-0	1.79	97°C	88 days ³
Perfluoropropane sulfonic acid (C3)	PFPrS	F F F OH	423-41-6	2.75	196°C	
		Short chain PFA	S	I		
Perflurobutanoic acid (C4)	PFBuA		375-22-4	1.43	121°C	72 hours ⁴
Perfluorobutane sulfonic acid (C4)	PFBuS	FFFF	375-73-5	2.79	152°C	26 days⁵
Perfluoropentanoic acid (C5)	PFPeA		2706-90-3	1.35	113°C	
Perfluoropentane sulfonic acid (C5)	PFPeS	F F F F F OH	2706-91-4	3.38	218°C	0.63 years ⁶
Perfluorohexanoic acid PFHxA (C6)	PFHxA		307-24-4	2.85	157°C	32 days ⁷
Perfluoroheptanoic acid (C7)	PFHpA	F F F F F F F	375-85-9	2.05	146°C	1.5 years ⁸
	0	ther PFAS/precur	sors			
HFPO-DA propanoateammonium salt of heptafluoropropoxy-propanoate	GEnX	F F F F F F F F F F F F F F F F F F F	62037-80-3	5.12	180°C	
7H-Perfluoro-4-methyl-3,6- dioxaoctanesulfonic acid/ [PFESA (Nafion) Byproduct 2]	NBP-2		749836-20-2	5.98	221°C	292 days ⁹


- 9 PFAS species routinely measured in urine
- 4 of them match PFAS in tested products
 - PFPrA, PFBuA, PFBuS, GenX

21

Cross-shift changes in urinary PFAS among coating workers (ng/mL, ppb)


- <u>Post-shift</u> levels of PFPrS, PFHxA and NBP2 were significantly different than in<u>pre-shift urine (p</u><0.05) of coating workers.
- Concentrations of ultra-chain PFAS in urine samples of <u>coating workers were 100 times</u> higher than values reported in the general population (Zheng et al. 2023*).

*Zheng G, Eick SM, Salamova A. Elevated Levels of Ultrashort- and Short-Chain Perfluoroalkyl Acids in US Homes and People. Environ Sci Technol. 2023 Oct 24;57(42):15782-15793. doi: 10.1021/acs.est.2c06715. Epub 2023 Oct 11. PMID: 37818968; PMCID: PMC10603771.

Markers of Oxidative Stress in Urine

- Asthma
- COPD

•

- Chronic inflammation
- Autoimmune disease
- Myocardial infarction
- Ischemia
- Hypertension
- Chronic Kidney
 diseases
- Nephritis
- Parkinson
- ADHD
- Stroke
- Melanoma
- Dermatitis
- Psoriasis
- Cancer

Urinary oxidative stress markers

DNA/RNA damage biomarkers:

- 8-hydroxy-2'-deoxyguanosine(80HDG)
- 8-hydroxyguanosine (80HG)
- 5-hydoxymethyluracil (50HMeU)

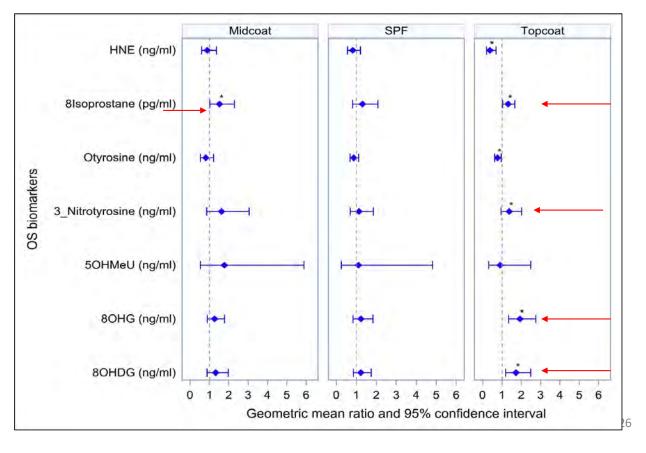
Protein oxidation biomarkers:

- 3-Chlorotyrosine
- 3-Nitrotyrosine
- O-Tyrosine

Lipid peroxidation biomarkers:

- 8-Isoprostane
- 4-Hydroxy-2-nonenal (4-HNE)
- Malondialdehyde (MDA)

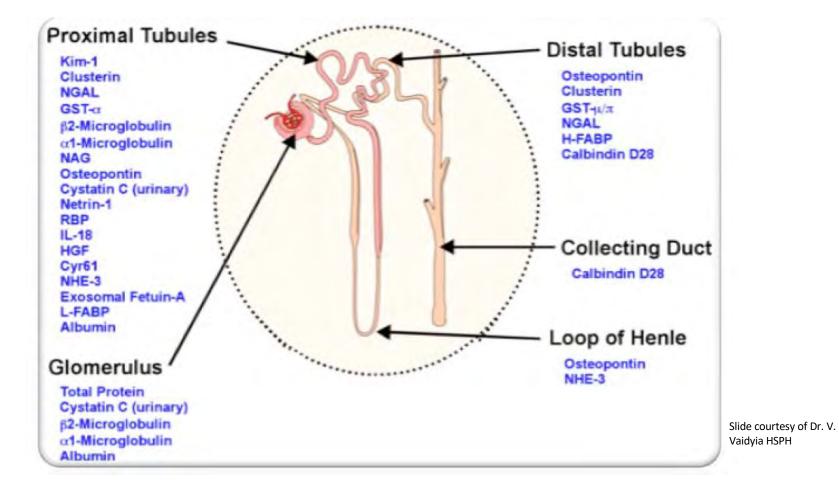
Urinary OS markers


Biomarkers		Midcoat (n=	14)	Topcoat (n=25)		
(ng/mg creatinine)	% detects	GM (GSD)	Range	GM (GSD)	Range	
8OHdG	100	3.26 (2.04)	1.22 - 9.35	2.35 (1.89)	0.69 - 5.53	
80HG	100	5.87 (1.66)	2.19 - 15.63	6.19 (1.46)	3.41 - 10.75	
50HMeU	68.8	0.1 (4.94)	0.02 - 15.72	0.1 (2.67)	0.01 - 0.45	
3-Nitrotyrosine	75	0.16 (5.08)	0.01 - 2.61	0.44 (1.75)	0.16 -1.67	
O-Tyrosine	100	1.33 (2.87)	0.37 - 10.17	0.88 (2.06)	0.18 - 2.88	
8-lsoprostane	96	20.49 (7.75)	0.33 - 231.69	20.96 (2.15)	3.76 – 20.1	
4-HNE	100	2.34 (2.97)	0.52 - 23.37	1.95 (2.51)	0.30 - 12.01	
MnDAld	100	243.99 (1.88)	91.77 - 558.58	197.8 (1.53)	73.59 - 386.8	

Cross-shift changes in urinary OS Markers

Top-coat: 4 oxidative stress markers were significantly higher in post-shift compared to pre-shift of top coating coating workers

Higher risk among coating workers compared to SPF workers!

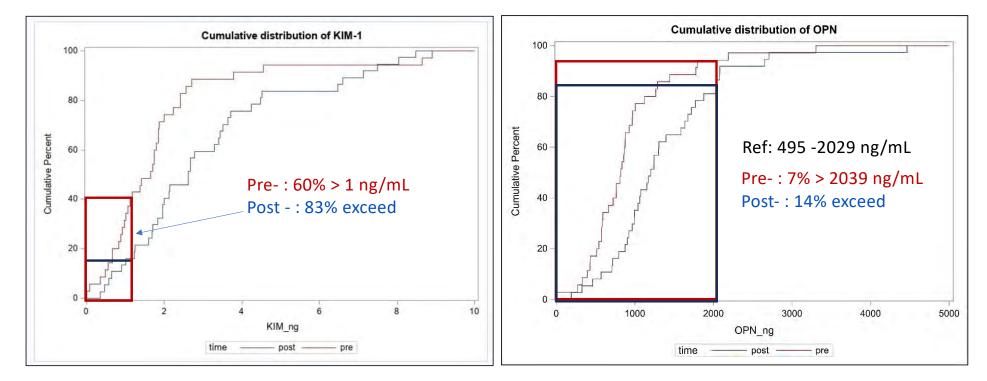

Ratio of Post/Pre –shift Oxidative Stress Markers among coating workers vs SPF

Association with urinary exposure biomarkers

Ln-OS biomarkers = $\beta_0 + \beta_1^*$ Ln-Biomarker + β_2^* Creatinine + β_3^* Age + ϵ

OS Biomarker	Task	Exposure biomarker	β_1	P-value
8-OHdG	midcoat	BADGE*2H2O	0.24	0.04
4-HNE	midcoat	BADGE*2H2O	-0.03	0.02
8-OHdG	topcoat	HDA	0.20	0.03
8-Isoprostane	topcoat	HDA	0.19	0.08

Some candidate biomarkers for kidney damage/injury


28

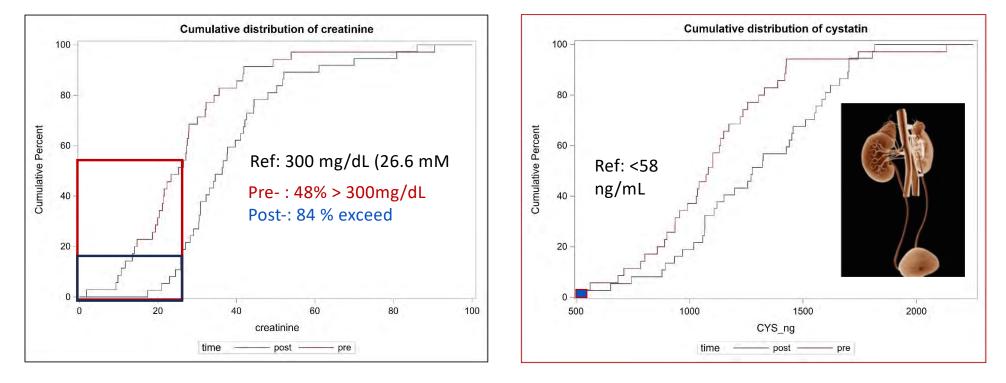
Clinical basis of AKI biomarkers

AKI Biomarker Name (unique ID uniprot)	Abbrev.	ORIGIN
Kidney Injury Molecule-1 (Q96D42)	KIM-1	A type I transmembrane glycoprotein [containing an ectodomain consisting of an immunoglobulin-like domain and a mucin domain] that is strongly induced by ischemic and toxic insults to the kidney.
Osteopontin (P10451)	OPN	A highly acidic glycoprotein expressed by many tissues that acts as a macrophage adhesion and chemotactic molecule .
Neutrophil gelatinase- associated lipocalin (P80188)	NGAL	Expressed in various tissues at low levels with upregulated transcription in tubuloepithelial cells following ischemic and nephrotoxic kidney injuries .
Urinary Clusterin (P10909)	CLU	A heterodimeric highly conserved secreted glycoprotein expressed in the proximal and distal tubules, glomerulus and collecting duct.
Cystatin-C (P01034)	CysC	A small serum protein produced by all nucleated cells and found in most tissues and body fluids. CysC is freely filtered by the glomerulus and completely reabsorbed and catabolized in healthy renal tubular epithelium.
Growth Differentiation Factor	GDF	Member of TGF β superfamily. Predicts CDK outcome and progression.
Fibrinogen	FG	Fibrinogen is a soluble 340-kD protein mainly synthesized by the liver; central function in hemostasis. Predictor of interstitial fibrosis and tubular atrophy and independent risk factor for CKD .

KIM-1 (ng/mL)

OPN (ng/mL)

ng/mL

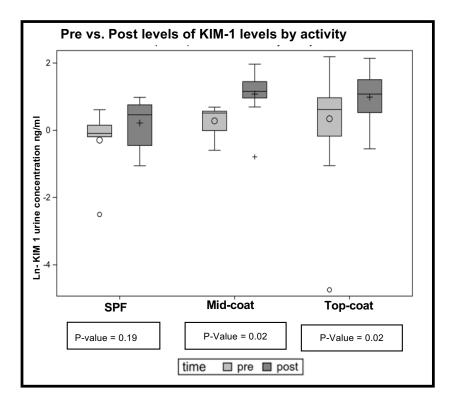

Proximal tubule injury

Systemic: macrophage adhesion and chemotactic molecule.

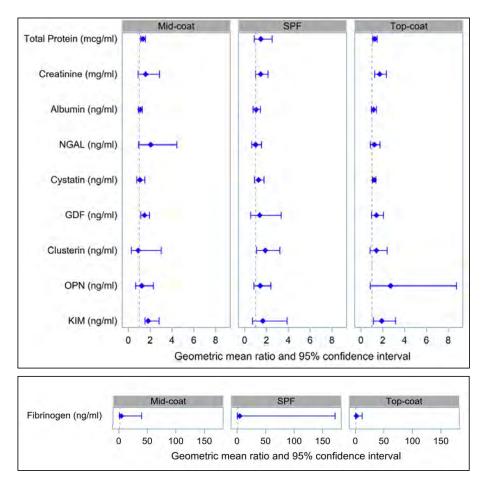
30

Creatinine

mМ


Glomerular filtration

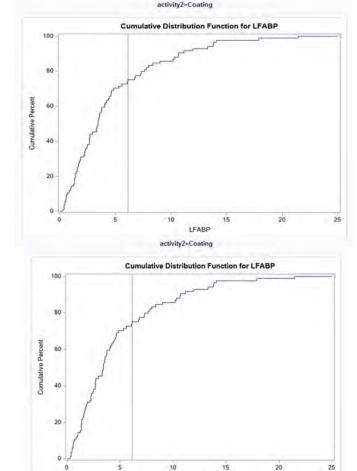
ng/mL


Systemic small protein; Freely filtered by the glomerulus and completely reabsorbed and catabolized in healthy renal tubular epithelium

Post-shift KIM 1 is significantly higher than pre-shift urine in coating workers but not in SPF workers !!!

	KIM-1 (ng/mL)		
SPF (n=7)			
Pre-Shift GM(GSD)	0.7 (2.8)		
Post-Shift GM(GSD)	1.2 (2.1)		
Range	0.1 – 2.7		
Mid-coat (n=10)			
Pre-Shift GM(GSD)	1.3 (1.6)		
Post-Shift GM(GSD)	2.9 (2.2)		
Range	0.5 – 7.1		
Top-coat (n=20)			
Pre-Shift GM(GSD)	1.4 (4.3)		
Post-Shift GM(GSD)	2.7 (2.1)		
Range	0.01 – 8.9		

GM ratios of AKI biomarkers: Post-/Pre-shift



L-FABP, a promising heat stress biomarker *

L-FBAP (ng/ml)	n	Mean	Median	GM (GSD)	Range
Overall	156	4.33	3.87	2.84 (2.7)	0.28 - 21.46
Pre	69	3.73	2.64	2.52 (2.7)	0.28 - 13.32
Post	87	4.81	3.50	3.13 (2.7)	0.30 - 21.46
SPF					
Overall	70	3.82	2.51	2.52 (2.7)	0.28 - 13.62
Pre	30	3.76	2.51	2.53 (2.7)	0.28 - 11.01
Post	40	3.87	2.64	2.52 (2.7)	0.30 - 13.62
Coating					
Overall	84	4.67	3.42	3.07 (2.7)	0.28 - 21.46
Pre	38	3.66	2.67	2.46 (2.7)	0.28 - 13.32
Post	46	5.50	3.68	3.68 (2.6)	0.47 - 21.46
Injection					
Overall	2	8.00	8.00	7.6 (1.6)	5.50 - 10.50

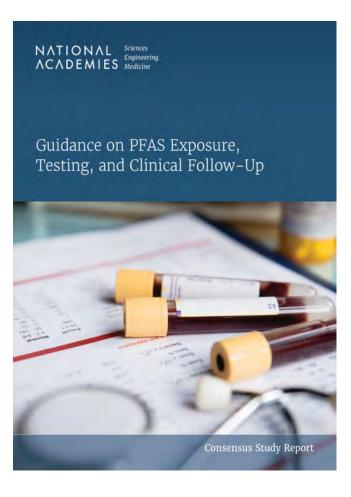
* Goto et al 2022; Liver-type Fatty Acid Binding Protein, L-FABP

LFABP

34

Spearman Correlation between L-FABP and exposure and kidney biomarkers

Coating (n=	Coating (n=49)		SPF (n=14)		
L-FABP	p-Value	L-FABP	p-Value		
0.42	<0.01	0.48	0.11		
0.24	0.09	0.37	0.24		
0.46	<0.01	-	-		
-0.04	0.78	-	-		
0.41	<0.01	0.79	0.03		
0.31	0.03	0.61	0.03		
0.28	0.05	0.06	0.84		
	L-FABP 0.42 0.24 0.46 -0.04 0.41 0.31	L-FABP p-Value 0.42 <0.01	L-FABP p-Value L-FABP 0.42 <0.01		

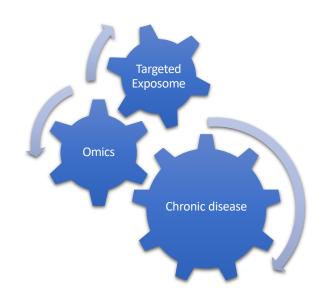

New 3- year study

Developing a national roadmap to reduce per- and polyfluoroalkyl (PFAS) exposures among construction painters and allied trades

- Identify construction trades with the highest PFAS burden via blood and urine biomonitoring
 - Use NASEM guidelines for clinicians to guide risk categorization & interventions
- Document PFAS use in construction materials
- Develop PFAS exposure and body burden reduction strategies

Benefits to participants & trades

- Know you PFAS levels in blood and how much comes from work
- Be informed of ways to reduce your PFAS exposures and risks
- Help make construction chemically safer for all
- Provide input on materials to be tested



Our vision for the future of chemically-induced chronic diseases in construction

Painters were classified as a Class I occupational carcinogen as early as 1987.

- Real drivers of carcinogenicity not well known to this day
- Limited methods and tools to study chemical exposures and no ongoing prospective longitudinal studies
- Minor emphasis on chemical exposures as drivers of outcomes!
- BTMed an excellent series of studies on health outcomes, but it reflects exposures of the past 30 years. Exposures of today – very different from 30 years ago - will define diseases of tomorrow!

Modern environmental health

Acknowledgment

We express our most sincere thanks to all contractors, painters, our industry collaborators; CPWR staff and our graduate students for their assistance with field and lab work.

Thank you for your attention!

For additional questions, comments, requests for technical assistance, or for collaborations please contact:

Dhimiter_Bello@uml.edu

Anila_Bello@uml.edu

Tel: 978.934.3343

For copies of publications please contact Jessica or Anila