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Abstract 
The ability to hear safety cues while wearing hearing protection equipment (HPE) is critical to preventing 
injuries and deaths on construction job sites. The goal of this project is to improve auditory situational 
awareness of construction workers exposed to loud noise by investigating a new hearing protection 
technology that uses artificial intelligence (AI) to amplify safety-critical sounds of collision hazards while 
greatly attenuating ambient noise. This Small Study focused on developing a signal processing model to 
help workers wearing HPE improve their audible sense of mobile equipment. This study included three 
phases: (a) collecting audio data of construction equipment, (b) developing a novel audio-based machine 
learning model for automated detection of collision hazards to be integrated into intelligent hearing 
protection devices, and (c) conducting field experiments to investigate the system’s efficiency and latency. 
The outcomes showed that the proposed model detects equipment correctly gave workers timely 
notifications of hazardous situations.  
 
Key Findings 
The key results of this study include: 

• The machine learning models trained with a Convolutional Neural Network (CNN) yield reliable 
collision hazard predictions, with an accuracy of 88% in detecting sounds related to collision hazards 
when the signals are not buried in background noises. Accuracy remained at that level in loud-noise 
situations when the signal-to-noise ratio remains above 10db. 

• The study developed a mobile application implementing the CNN model and conducted two sets of 
experiments, in a controlled environment and on a construction site. The results showed that the 
mobile application yields a high detection accuracy, particularly for equipment with unique sound 
patterns. 
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Introduction 
According to the Occupational Safety and Health Administration (OSHA), construction has an 
unusually high annual fatality rate compared to other industrial sectors in the U.S. (Hinze et al., 
2011). Struck-by-vehicle incidents are a leading cause of construction-related deaths (Samantha et 
al., 2021), mainly due to the proximity between workers and heavy mobile equipment on job sites 
(Marks et al., 2013). Previous studies reported that the critical factor leading to collisions was the 
decline in auditory situational awareness of construction workers (Morata et al. 2005) and the 
complicated nature of construction noises (Vinnik et al. 2011). Therefore, a novel audio-based 
technique that can augment the audible sense of workers is crucial to improving safety performance.  
 
Advanced computational techniques in auditory signal processing are highly applicable for collision 
hazard detection in construction as mobile construction equipment often produces unique sound 
patterns while performing certain activities (Cheng et al. 2017, Cheng et al., 2016). However, 
acoustic events are typically complicated by heterogeneous sound types generated from diverse 
equipment operations, including static equipment and hand tools (Lee et al. 2020, Xie et al., 2019). 
Therefore, it is useful to distinguish between acoustic events of mobile equipment, which may 
produce collision hazards, and acoustic events of stationary equipment. The auditory surveillance of 
vehicles that are potential causes of struck-by incidents would significantly improve construction 
safety.  
 
However, sound sensing for safety in construction has received little attention from the academic 
community. Most studies focused on tracking construction equipment have focused on reducing 
operating costs and identifying working and operation activities (Cheng et al. 2017, Cheng et al. 
2016, Sabillon et al. 2018, Sherafat et al. 2018). No previous studies have been designed to help the 
workers recognize important signals buried in background noises. To address this gap, we propose a 
novel audio-based machine learning model for the automated detection of collision hazards at 
construction sites. The study has two primary contributions: (1) a new labeled dataset of normal and 
abnormal sound events relating to collision hazards at the job site, and (2) a Convolutional Neural 
Network (CNN)-based sound processing model for automated detection of collision hazards. 
 
 

Objectives 
This study aimed to determine whether the proposed technology improves workers’ safety by 
augmenting their ability to hear important sounds related to collision hazards. Its goals include: 

1. Identifying and characterizing distinctive features of acoustic safety cues associated with 
abnormal equipment-related situations that require quick and effective responses from 
construction workers. 

2. Developing an AI technique for automated recognition of auditory events over complex and 
ambiguous ambient noises. 

3. Developing a proof-of-concept prototype of intelligent hearing protection equipment that can 
recognize critical sounds and alert users to potential hazards. 

 
Methods 
To enable automated detection of potential collisions associated with mobile equipment on the construction site, 
we developed an innovative framework using a supervised deep learning approach for distinguishing critical 
sound and background noises. The overall process included three main steps: (1) collecting and labeling acoustic 
signals as abnormal and normal types, which were mixed at different signal-to-noise ratios for testing purposes, 
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(2) extracting acoustic features using the Fast Fourier Transform (FFT) function, and (3) training a CNN model 
using the labeled data to detect acoustic events. Fig. 1 presents an overview of this study. 

 
   Figure 1. Framework for audio-based classification 

 
Dataset preparation 
The data preparation stage defined the set of events the system should recognize for the scope of the study, and 
the audio files of the dataset prepared for this research included two sources: 1) audiotapes extracted from videos 
downloaded from publicly available repositories and 2) sound recorded from construction sites of our industry 
partners. Since sounds are an essential indicator of dangerous situations requiring quick safety responses, 
collected sound events were manually labeled as abnormal and normal. Equipment in motion is a primary source 
of construction hazards and should therefore be considered to be producing abnormal sounds, while the sounds 
of stationary equipment were tagged as normal (see Table 1). There were 180 selected audio files in the abnormal 
group (20 for each of nine types of mobile equipment) and 140 selected audio files in the normal group (20 for 
each of seven types of stationary equipment). The duration in seconds of the audio files in each subset of the 
abnormal class and of the normal class are summarized in Table 1. 

 
Table 1. Number of original examples in each subset of data 

Abnormal group 
(Mobile equipment) 

Normal group 
(Stationary equipment) 

Type Total 
duration(s) 

Count Type Total 
duration(s) 

Count 

Bulldozer 60 20 Concrete pumper 60 20 
Compactor roller 60 20 Hammer 60 20 
Crane 60 20 Pile driver 60 20 
Excavator 60 20 Pneumatic breaker 60 20 
Front end loader 60 20 Pneumatic tamper 60 20 
Forklift 60 20 Saw 60 20 
Grader 60 20 Steel welding 60 20 
Scraper 60 20    
Water truck 60 20    

Total 540 180  420 140 

 

The audio files were selected and recorded in high quality, avoiding noisy backgrounds, and 
converted into the .wav format at 16 kHz sampling rate, 16-bit depth, and mono channel. To generate 
audio examples that include concurrent sounds for testing purposes, the abnormal signals (mobile 
equipment sounds) were mixed with the normal noises (stationary equipment sounds) at different 
signal-to-noise ratios (SNRs). SNR represents how large the signal level is compared to the noise 
level, and the unit is in dB (decibels). A signal is defined as an abnormal sound that needs to be 
detected while noise refers to unimportant sounds of stationary equipment.  The higher the SNR is, 
the higher the signal's amplitude is relative to that of the noise. The SNR can be calculated by the 
following formula: 

𝑆𝑆𝑆𝑆𝑆𝑆𝑑𝑑𝑑𝑑 = 20𝑙𝑙𝑙𝑙𝑙𝑙10

𝐴𝐴𝑠𝑠𝑠𝑠𝑙𝑙𝑠𝑠𝑠𝑠𝑙𝑙
𝐴𝐴𝑠𝑠𝑙𝑙𝑠𝑠𝑠𝑠𝑛𝑛

              (1) 
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This sound mixing process generates a new dataset of 44,800 audio files, each of which is a mixture 
of two distinguishable equipment types: mobile equipment mixed with stationary equipment, or 
stationary equipment mixed with stationary equipment, as shown in Figure 3. The new audio files 
that include one sound from the mobile equipment group are considered abnormal, such as an 
excavator mixed with a hammer. The audio files do not classify any sound from mobile equipment 
as normal. The mixtures were created at different SNRs (-10dB, -5dB, 0dB, 5dB and 10dB) which 
was used for testing. 

 
 

 

 

 

 

 

 

              
 
 
                Figure 2. Diagram of sample audio file mixtures. 

 

Feature extraction 
The audio files in the dataset were used for extracting Mel-Frequency Cepstral Coefficients (MFCCs) features, 
the most commonly used acoustic features in signal processing (Cowling et al. 2003, Eronen et al. 2006). The 
extraction of MFCC involves the following three steps:  

a) Framing and Windowing: In this step, the original audio files were segmented into smaller 
frames with an equal length of 25 milliseconds. Windowing is a standard procedure 
performed before spectrum calculation to minimize spectral leakage and increase spectrum 
sensitivity, which is unavoidable when dividing the data frame of the audio signal and 
introducing discontinuities at the frame border (Wieczorkowska et al, 2018). The window 
size should be small and large enough so that enough power spectral within each window 
can be obtained. The most popular window length is 25 milliseconds with 10-millisecond 
overlap (Alamdari et al. 2017). This window size generates 400 samples with a sampling 
rate of 16 kHz. The Hanning window is employed in this step to eliminate the edge effects 
caused by framing (Zhang et al. 2018). As a result of windowing, the original audio signal 
values are tapered to zero at both ends of the frame (Wieczorkowska et al, 2018).  

b) Fast Fourier Transform: We used Fast Fourier Transform to convert the input signals from 
the spatial domain to the frequency domain. The audio is computed with a 512-point FFT 
using the Hanning window function (Cheung et al. 2010, Wirz et al. 2010). Due to the high-
power spectral density, it is necessary to down-sample the audio at an appropriate sampling 
rate. Frequencies higher than half of the sampling rate, such as the Nyquist frequency, will 
affect the samples in a way that is misinterpreted by the interpolation process. Hence, 
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choosing a reasonable sampling rate would achieve the best results (Tarzia et al. 2011, Janjua 
et al. 2019). Audio sound is typically recorded at a rate of 44,100 kHz; in this case, the sound 
is down-sampled to 16 kHz since our examination of the data showed that most of the 
frequencies are under 8 kHz.  

c) Mel-Filter Bank and Inverse Fourier Transform: The magnitude spectrum of the frequency 
domain is fed into Mel-filter banks. Each filter has a center frequency called the filter bank 
energies. This compression operation makes the acoustic features match more closely to 
what humans hear and produces the log of the power of the spectrum energy at each of the 
Mel-frequencies. In the following step, the Discrete Cosine Transform (DCT) is applied to 
filter bank energies. The output coefficients of DCT are called Mel Frequency Cepstral 
Coefficients (MFCCs). MFCC is the feature most commonly used in sound classification 
and detection (Cowling et al. 2003, Eronen et al. 2006). It is worth noting that our work 
considers MFCC coefficients in a range between 10 to 20. This is because the higher MFCC 
coefficients represent fast changes in the filter bank energies, and it turns out that these rapid 
changes degrade sound classification performance. The MFCCs extracted from the sound 
signal are stored as an array of values which are used as the input data when training the 
classification model.  

Model development 
We used CNN to train signal processing models that classify abnormal and normal sounds. The training process 
is illustrated in Figure 3 and discussed in the following subsections. 

    
  Figure 3. Audio signal processing process 

 

CNN model  
After the feature extraction was completed, the CNN model was developed for sound detection with the array of 
the MFCC values as the input. The size of MFCC values is M x N, where M is the number of frames and N is 
the number of MFCCs. The deep CNN architecture employed in this study comprises four convolutional layers 
with different number of channels as depicted in Figure 3, followed by a max-pooling layer, a dropout layer, a 
flatten layer, and two fully functional dense layers connected layers to get the output. The activation function 
used for convolutional and dense layers is the Rectified Linear Unit, most used in deep learning models. The 
function returns zero if it receives any negative input, but it returns the same value for any positive value. The 
SoftMax activation function is applied to the output layer. The output layer includes the predicted labels (normal 
or abnormal) of the input audio files.   
 
We trained the CNN model by using 80% of the samples for training and the remaining 20% for testing. The 
training procedure was stopped after 20 epochs.  In the baseline model, the authors initially considered 20 
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MFCCs, 20 filters in the filter bank, and the window size of 500ms. Then, CNN models were trained with some 
modification of parameters. Finally, the best value of the number of MFCCs, number of filters, and window size 
was applied to run the CNN model. Each model was subsequently tested on five test sets with five different SNR 
value (-10dB, -5dB, 0dB, 5dB, and 10dB). 
 
Overfitting of the model was one of the errors encountered during the development of CNN models. We 
implemented the ensembles of trained models with different settings to address this issue. To reduce the 
computational requirements for the ensemble training we used dropout (a regularization technique) to randomly 
drop out some nodes in the neural network. This means that their contribution to the activation of downstream 
neurons was temporally removed on the forward pass, and any weight updates were not applied to the neuron on 
the backward pass. The process made use of a probability of 0.5.  Even though dropout did not mean accuracy 
will increase, it helped prevent the most common error in CNN, overfitting of the model. The combination of 
ensembles and dropout is a well-known computationally cheap and remarkably effective method to reduce 
overfitting while improving generalization error in deep neural networks. 

Evaluation 
This study used a ten-fold cross-validation approach to avoid the randomness of selected validation examples 
when measuring the prediction performance. The training and validation data set was obtained by dividing the 
original dataset into ten mutually exclusive folds of data (see Figure 4). The data folds were selected in Stratified 
k-fold cross-validation so that each contains the same number of abnormal sound examples. Each fold was used 
once to validate the performance, and the remaining nine folds were used for training, which obtained ten 
independent performance values. This procedure was repeated ten times by changing the remaining folds, and 
ten prediction performances were generated. The performance of the prediction model was obtained by the 
average predictive results of the ten folds. 

 
Figure 4. Ten-fold cross-validation 

 

To measure the performance of the classification techniques, four different metrics including 
accuracy, precision, recall, and F1-score, were used. Accuracy was used to evaluate the sound 
detection performance, as shown in Equation 2. The accuracy metric is determined based on the 
following figures: true positive (TP), true negative (TN), false positive (FP), and false negative (FN), 
where TPs are the number of audio files labeled correctly as “abnormal,” FPs are the number of 
audio files labeled incorrectly as “abnormal,” TNs are the number of audio files labeled correctly as 
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“normal,” and FNs are the number of audio files labeled incorrectly as “normal.” In plain language, 
accuracy is the number of correct predictions divided by the total number of predictions. The 
accuracy reaches its best at 1 and worst at 0. 

𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝑠𝑠𝐴𝐴𝐴𝐴 =
𝑇𝑇𝑇𝑇 + 𝑇𝑇𝑆𝑆

𝑇𝑇𝑇𝑇 + 𝑇𝑇𝑆𝑆 + 𝐹𝐹𝑇𝑇 + 𝐹𝐹𝑆𝑆
        (2) 

Precision measures how many of the true points predicted are actually true, whereas recall measures 
the rate of how many true points are correctly predicted, respectively expressed in Equations (3) and 
(4). Both precision and recall are desirable, but a trade-off between the two measures may be needed, 
as they can be negatively correlated. The F1-score is a combined measure of precision and recall as 
shown in Equation (5). The F1-score reaches its best at 1 and worst at 0. 

𝑇𝑇𝐴𝐴𝑛𝑛𝐴𝐴𝑠𝑠𝑠𝑠𝑠𝑠𝑙𝑙𝑠𝑠 =
𝑇𝑇𝑇𝑇

𝑇𝑇𝑇𝑇 + 𝐹𝐹𝑇𝑇
        (3) 

𝐴𝐴𝑛𝑛𝐴𝐴𝑠𝑠𝑙𝑙𝑙𝑙 =
𝑇𝑇𝑇𝑇

𝑇𝑇𝑇𝑇 + 𝐹𝐹𝑆𝑆
        (4) 

𝐹𝐹1− 𝑠𝑠𝐴𝐴𝑙𝑙𝐴𝐴𝑛𝑛 =
2𝑇𝑇𝑇𝑇

2𝑇𝑇𝑇𝑇 + 𝐹𝐹𝑇𝑇 + 𝐹𝐹𝑆𝑆
        (5) 

 
Accomplishments and results 
The CNN models were trained using Python programming language on Clemson Palmetto supercomputer 
clusters equipped with a CPU @ 40 GHz, V100 with NVLink GPU model, and 4 GPUs per chunk. We then 
developed a prototype on a mobile device that implements the trained CNN models to support automated 
detection of collision hazard sounds. We tested the device on both hypothetical and real construction sites.  

Computational performance of the CNN models 
We trained various CNN models using different neural network settings. The performance of the best model 
tested on each of the five test sets is summarized in Table 2. Overall, the results showed that the performance 
scores increased when there was less background noise in the audio files. When being tested on the dataset 
without overlapping sounds, the model achieved an accuracy of 87.98%. This figure dropped to 85.17% when 
background noise sounds, were added to the clean signals at 10db SNR. The model’s performance became 
relatively poor when noises were significantly louder than important signals. The accuracy of the models on 
the -10db SNR and -5db SNR were 50.63% and 56.85% respectively.  

      
  Table 2. Comparison of model performance (frame size = 0.1s) 

 Performance achieved on each test set 
Metrics -10dB -5dB 0dB 5dB 10dB No 

mixture 
Accuracy 0.5063 0.5685 0.6760 0.7785 0.8517 0.8798 
Precision 0.5844 0.6466 0.7218 0.7911 0.8498 0.8779 
Recall 0.5492 0.6069 0.6979 0.7920 0.8551 0.8858 
F1-score 0.4697 0.5508 0.6716 0.7785 0.8507 0.8789 

 

Field tests and experimental setup 
In order to validate the applicability of the developed model in real construction sites, we built a mobile 
application for Android devices using TensorFlow Lite framework (a lightweight framework for training 
machine learning models). This mobile application provides users with alerts of the occurrence of mobile 
equipment, along with the probability that the detection is correct. We first converted the saved CNN model 
(meta graph) with the highest accuracy using a TensorFlow Lite Converter to a file format of protobuf (.pb) – 
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which contains the graph definition as well as the weights of the model into TensorFlow Lite (.tflite) – that 
enables on-device machine learning on Internet of Thing devices. During the conversion process from a 
TensorFlow model to a TensorFlow Lite, the size of the file is reduced, and there is a possibility of further 
reducing the file size, although there may be a trade-off in execution speed of the model. The CNN models, 
which were trained using the TensorFlow Lite framework, were then converted to the Android Studio ML Model 
Binding format. This allows the models to be compatible to Android devices. This metadata of the Android 
Studio ML Model Binding files includes the details of the trained models along with other descriptions required 
to deploy the model. The mobile application implementing the trained models was built using Android Studio 
4.2. Fig 5 shows the Android application and loudness recorder interface, respectively. 
                           

Two separate experiments were conducted to evaluate the efficacy 
of the Android application in detecting the proximity of mobile 
equipment. The first experiment (including sixteen test signals) was 
carried out in the laboratory, while the second (including four test 
signals) was done on the field. We repeated each test three times to 
avoid measurement errors. For each of the experiments, the 
following outputs were recorded: type of equipment detected, the 
probability that the detection is correct, and the time it took to detect 
the signal. The loudness of the sound while experimenting ranges 
between 72 and 80db, measured using a Decibel Meter iOS 
application.  

Figure 6 shows the experimental setting for the experiments in the 
laboratory. A sound source (providing 16 types of sound) generated 
from a computer speaker was placed four meters away from the 
mobile device. In the field experiments, a site engineer was asked to 
carry the mobile device with the mobile application installed and stand 10 meters and 20 meters 
from the equipment. He recorded the average time and probability of hazard detection for three 
samples of each of the four types of equipment. The variation in distance checked the impact of 
distance on the model, because equipment closer d to a worker signifies more danger. Fig 7 and 8 
shows the setup for testing the model on the construction site. 

 

Figure 5. Sound classification 
android application 
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Figure 6. Experiment setup in the controlled environment: the loudness detector is on the left, the 
computer and the mobile device on the right)   

 

   
Figure 7. Sound detection experiments with an excavator and a front-end loader 
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Figure 8. Sound detection experiments with a hammer 

 
Testing results 
Table 3 below shows the result from the set of experiments conducted in the controlled environment. The 
acoustic sensing application monitored equipment classification and measured the time required to detect the 
auditory signal of mobile equipment. The application typically took less than 10 seconds to generate an alert. 
Yet it is difficult to confirm whether this latency is sufficient for real-time hazard detection, as it depends on 
many job site factors, such as the speed and the direction of a target mobile vehicle as well as the presence of 
barriers between the worker and the equipment. It would be ideal to reduce the delay, which would allow the 
worker more time for responsive safety actions. Shortening the delay seems to be challenging, however, at 
complex workplaces with excessive background noise. Because of those complexities, our model requires 
significant computational power for training a large amount of real-life data. Future work is needed that 
implements advanced pre-processing algorithms (i.e., de-noising) with lower computational requirements, which 
would improve the overall performance of the proposed system, particularly reducing the detection duration.  

Another key observation from the field tests was that equipment working with concrete in motion tends to create 
significant noise, thus resulting in a lower probability value, and it requires a longer detection time than 
equipment like forklifts and compactor rollers. This complication can also be seen with equipment like front-end 
loaders: the sound detection has a relatively low probability due to the occurrence of background noise from the 
granite being picked up, which also causes delays in sound detection.  
 
The findings also show that the time required for detecting the mobile equipment tends to be shorter than that of 
stationary equipment. (The exception is pile drivers and hammers because of the uniqueness of the sound they 
produce.) There are cases when mobile equipment is detected as stationary equipment at first before being 
recognized as a piece of mobile equipment. This can be attributed to the device latency and the similarity in 
acoustical patterns exhibited by different types of construction equipment. To reduce latency, the models need 
to be trained on small data frames. However, the use of small frames may cause an adverse effect on the model 
accuracy if the acoustical features important to a certain sound type cannot be found in one data frame, making 
it difficult for the sound classifier to distinguish between classes (Messi et al. 2020). Therefore, when the feature 
pattern has less variation among the sound classes, it is necessary to increase the frame length. We plan to train 
additional models with longer frame lengths.  
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Table 3. Result the experiments in the laboratory  
Equipment Type Probability Duration (sec) 

Forklift    0.903     5.222 
Compactor roller    0.882     5.111 
Grader    0.826     5.222 
Hammer    0.783     5.111 
Bulldozer    0.768     5.667 
Scraper    0.681     5.444 
Water truck    0.672     8.278 
Excavator    0.656     4.000 
Front end loader    0.627     7.333 
Steel welding    0.604     9.000 
Pile driver    0.601     3.111 
Concrete pumper    0.532     9.667 
Pneumatic breaker    0.486     7.778 
Saw    0.454     7.889 
Pneumatic tamper    0.413     7.667 

 

The results from the experiments on the construction site (see Table 4) generally showed better 
performance--in both terms of probability and time to the first alert--when the worker was closer to 
the equipment. The probability range among the equipment is 27%-94% and 39%-93% when the 
worker is 10m and 20m, respectively, away from the equipment.  Acoustic sensing in the field 
experiments was affected by surrounding equipment noise and human activities on the construction 
site. This could be the main cause of low probability for some types of equipment such as the 
excavator (27% at 10m) and the saw (51% at 10m). Regarding the latency, the longest duration was 
14 seconds when the device detects the sound of the front-end loader, which is still relatively short. 
Compared with the experiments in the controlled environment, performance in the field tests was 
significantly reduced. The controlled environment is free of exterior noise, allowing easier and faster 
picking up of sound features and a higher confidence result. 

 
Table 4. Average Result from Site Investigation  

Equipment Type Probability Duration (sec) 

Distance 10m 20m 10m 20m 
Excavator 0.27 0.39 7.67 11.33 
Frontend loader 0.92 0.53 3.33 14.00 
Hammer 0.94 0.93 7.67 10.00 
Saw 0.51 0.66 9.00 10.67 

 

Discussions 
Heavy mobile equipment is a main source of fatal incidents in construction. Therefore, detecting the sound of 
mobile construction equipment is crucial to improving job site safety. Despite the significance of this issue, 
there is no system available that can detect auditory signals from vehicles that may create struck-by hazards, 
particularly when those sounds are buried in background noise. Early detection of the sound of mobile 
equipment can allow timely alerts to workers.  

 
This study developed an AI model using CNN-based signal processing to enable early detection of auditory 
signals related to potential collision hazards. We trained and tested various models with different signal-to-
noise ratios. To reduce the number of false negatives (missing any mobile equipment that will likely cause 
harm to field workers), the study emphasized the recall evaluation metric, which measures how many 
observations the model correctly predicted over the total number of observations. The findings (see Table 2) 
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showed that the model has a low probability of missing a potential hazard. Also, the precision value, which 
indicates the mislabeling of normal background sound as a danger, is in an acceptable range.  

 
The efficacy of the proposed framework was evaluated with controlled and field experiments that aimed at 
assessing the suitability of the mobile application in reducing incidents on construction sites. The processing 
capacity of a smartphone obviously plays a great role in determining how fast it detects and assesses the hazards, 
and the quality of the built-in microphone is critical to the input sound.  Moreover, the level of background noise 
greatly affects the efficacy of the framework. The results of the implementation experiments indicated that the 
probability of true positives for the controlled experiment is much greater than those of field tests, because the 
test sounds in the field tests were buried in background noises (e.g., near-by operations). Due to the scope of this 
Small Study, a comparison of our frameworks with existing electric systems for noise filtering (e.g., Etymotic 
Research Music-Pro Electronic Earplugs, Elvex COM-655 earplugs, 3M Peltor LEP-200, and Howard Leight 
Impact(R) Sport) was not completed but is in our future research plan. It is worth clarifying that the existing 
systems do not automatically distinguish between “important” and “bad” noises but filter sounds based on a 
predefined threshold of sound frequencies. Unlike the existing systems, our proposed framework is capable of 
automatically distinguishing between noises from mobile equipment and stationary equipment. Still, future 
experimental comparisons are needed to verify the efficacy and effectiveness of the new framework compared 
to other commercial devices.  

 
While the time required to capture important signals tends to be longer in the field experiments, it is still in an 
acceptable range. In addition, the device still can quickly detect sounds with unique characteristics (like 
hammers) despite the presence of loud background noise. Lastly, weird sounds generated by equipment when it 
is not properly maintained may affect the sound and increase the possibility of making a wrong prediction. 
Training the models using data with more background noise may help improve the device’s performance. The 
study demonstrated that CNN has a great potential for detecting important auditory signals buried in loud 
background noise on construction sites. However, the CNN model is considered a “black box” in which the 
learned equation difficult to explain to the end users because the model is comprised of complex relationships 
between numerous input features and the final output results from a large amount of data. This contrasts with 
traditional statistic models (e.g., linear regression and decision trees), which rely on a simple equation of a few 
variables that is easier to explain and interpret. The use of AI-equipped mobile devices requires high trust from 
the users because even though the model can approximate any functions represented by the data, studying its 
structure will not give any insights on the structure of the function being approximated. Machine learning models 
do not provide an explicit estimate of the importance of each feature on the model predictions. Also, is it difficult 
for the users to understand how different features interact.  

 

 
Although this study proves that the proposed CNN model is a reliable technique to help detect potential collision 
hazards at the construction site, there are still areas to be improved for successful practical implementation. One 
particular limitation of this research is that the system could not capture the location of mobile equipment, and 
sound localization would help workers be aware of their position relative to the direction and distance to the 
hazard. Mobile vehicles moving toward a worker is a risk, for example, but not if moving away. Thus, 
localization is important to reduce false alarms for the system. In addition, the background noise considered in 
this study is limited to sounds from stationary equipment. Other types of background noises--such as natural 
sounds (e.g., wind, rain) and transportation (e.g., car engine, horn)--should be added to the dataset.  

 
This study has provided a strong foundation on which to build more realistic models to detect collision hazards 
under the complicated nature of construction noises. Construction sites are dynamic environments where many 
activities are performed concurrently; site sound acoustic sensing is highly susceptible to noise and influences 
the properties of sound detected. Therefore, innovative approaches to de-noise and enhance the sound signals 
should be applied before the input sounds are being processed by our model in future work. 

Changes/problems that resulted in deviation from the methods 

N/A 
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Future funding plans 
We plan to leverage the results from this small study to develop large-scale proposals to secure funding from 
national agencies, including the National Science Foundation (NSF) and the National Institute of Occupational 
Safety and Health (NIOSH). 
 
Presentations, Publications, and Dissemination Plan 
The findings from this study have been disseminated through a few peer-reviewed technical 
papers, including: 
 

1. Huang*, Y., Trinh, M. T., & Le, T. (2021). Critical Factors Affecting Intention of Use of 
Augmented Hearing Protection Technology in Construction. ASCE Journal of 
Construction Engineering and Management, 147(8), 04021088. 

2. Dang, K., Le, T. A Novel Audio-Based Machine Learning Model for Automated 
Detection of Collision Hazards at Construction Sites. 2020 ISARC conference, Japan 
(2020).  

3. Kehinde Elelu , Tuyen Le (under review). Auditory Surveillance of Collision Hazards at 
the Construction Site Using Convolutional Neural Network. Automation in Construction.  
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