

UCSF/UC Berkeley

Carisa Harris, PhD, CPE David Rempel, MD, MPH Alan Barr, MS Nancy Guiterrez

<u>Virginia Tech</u>

Maury Nussbaum, PhD Abiola Akanmu, PhD Sunwook Kim, PhD Divya Srinivasan, PhD

1/29/20

THE CENTER FOR CONSTRUCTION **RESEARCH AND TRAINING**

VIRGINIA TECH.

Disclosures

We have no personal financial conflicts of interest to disclose.

Learning Objectives

- Define the burden of musculoskeletal disorders (MSDs) in Construction
- Describe passive exoskeletons (EXOs) & understand how they augment human capacity
- Summarize the evidence of the effectiveness and efficacy of EXOs in other industries
- Discuss CPWR research project designed to understand how to effectively use passive EXOs in construction

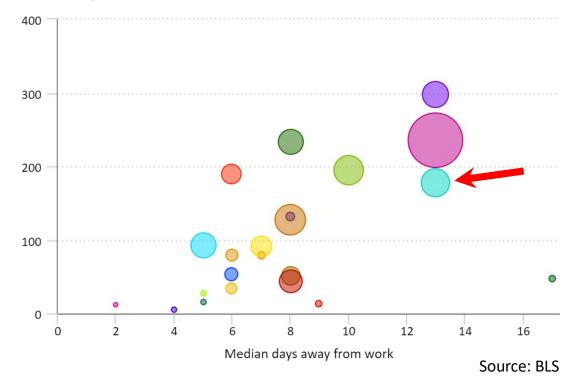
Burden of MSDs among Construction Workers Construction workers continue to experience high rates of workrelated musculoskeletal disorders (WMSDs): **11% higher** than all other industry sectors in 2016^{1,2}.

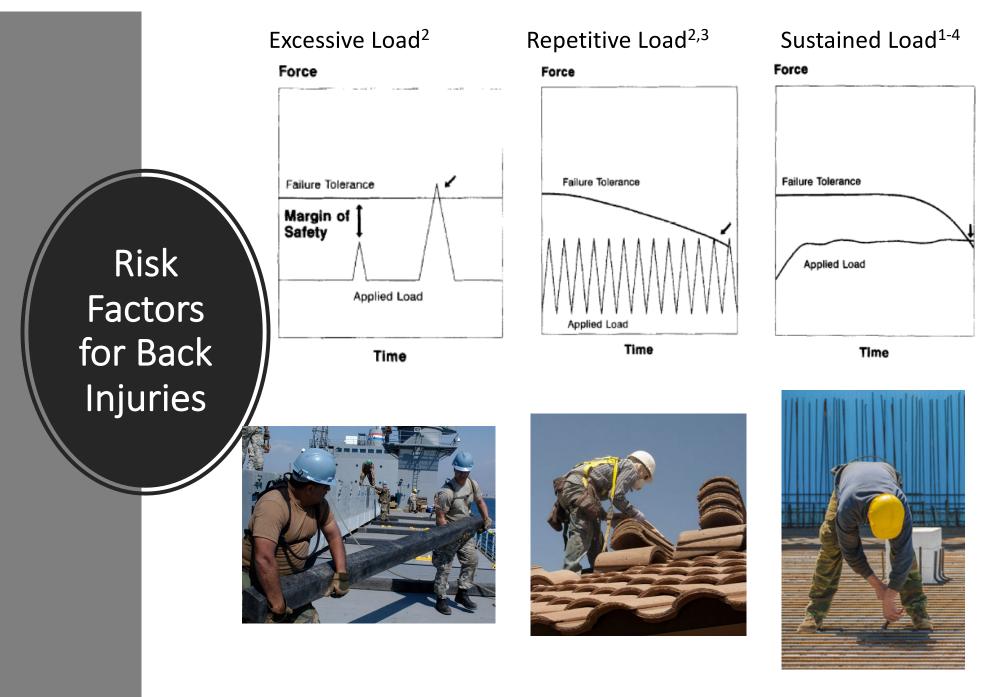
Back and the shoulder are the most impacted body regions

Back injuries account for 43% of all cases; median of 8 lost work days¹. Shoulder injuries account for 16% of all cases; median of 25 lost work days¹.

1. Bureau of Labor Statistics. Nonfatal Occupational Injuries and Illnesses Requiring Days Away from Work. 2018.

2. Wang X, Dong XS, Choi SD, Dement J. Work-related musculoskeletal disorders among construction workers in the United States from 1992 to 2014. Occup Environ Med. 2017;74(5):374-380.


Nonfatal Workplace Injuries


Number, incidence rate, and median days away from work for nonfatal work injuries and illnesses involving days away from work by major occupation group, private industry and state and local government, 2017

Bubble size represents number of cases.

Incidence rate per 10,000 full-time workers

S. McGill, "The Biomechanics of Low Back Injury: Implications on Current Practice in Industry and the Clinic," *Biomechanics*, vol. 30, no. 5, pp. 465, 475, 1997.
B. R. Da Costa and E. R. Vieira, "Risk factors for work-related musculoskeletal disorders: A systematic review of recent longitudinal studies," *Am. J. Ind. Med.*, vol. 53, no. 3, pp. 285–323, 2010.

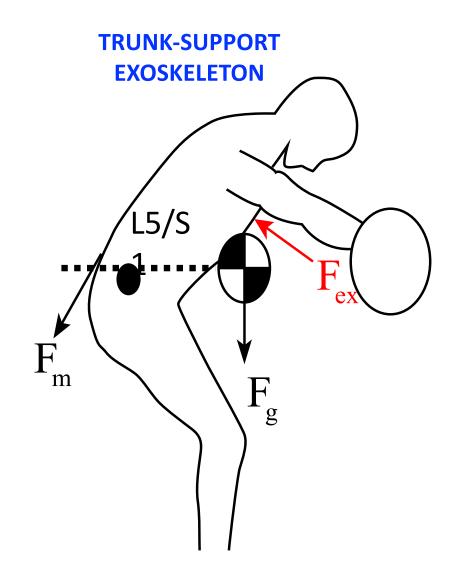
[3] W. E. Hoogendoorn et al., "Flexion and Rotation of the Trunk and Lifting at Work Are Risk Factors for Low Back Pain," Spine (Phila. Pa. 1976)., vol. 25, no. 23, pp. 3087–3092, 2003.

[4] L. C. Brereton and S. M. McGill, "Effects of physical fatigue and cognitive challenges on the potential for low back injury," Hum. Mov. Sci., vol. 18, no. 6, pp. 839–857, 1999.

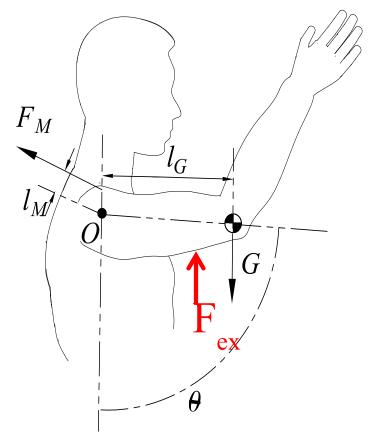
Non-Neutral Posture

Forceful Exertion

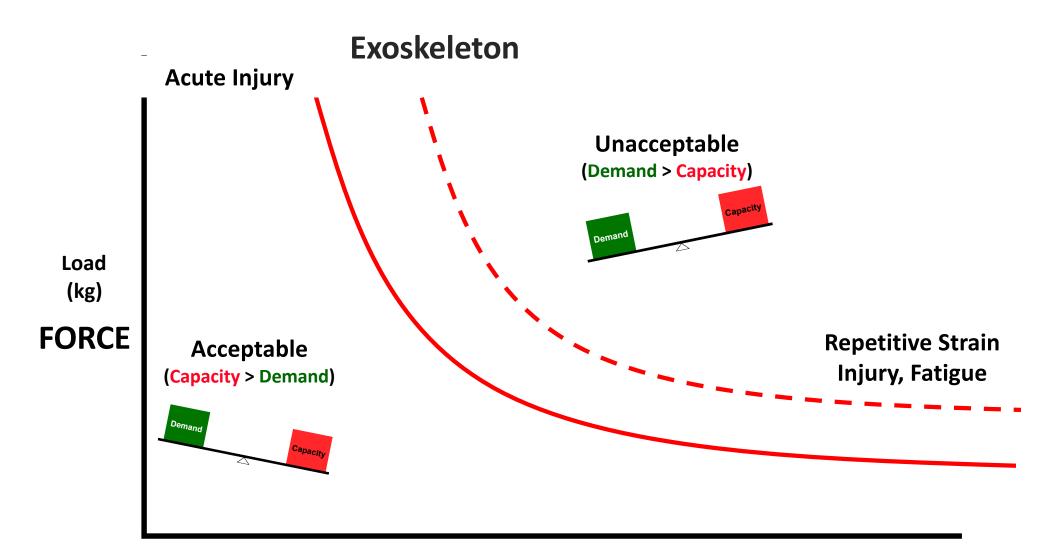
Repetitive or Sustained Reach



Risk Factors for Shoulder Injuries



"A wearable device that augments, enables, assists, and/or enhances physical activity through mechanical interaction with the body" -ASTM


Passive Exoskeletons

ARM-SUPPORT EXOSKELETON

A way to Augment Capacity

Frequency (Lifts / minute)

Industrial **Exoskeletons**

exoskeletonreport.com

Exoskeletons for work and industry.

Showing all 21 results

Sort by price: low to high 🗘

Arm Support (6)

Back Support (8)

25 products per page

Power Glove (2)

Tool Holding Exoskeleton (2)

FORTIS **Lockheed Martin**

Leg Support (3)

Ekso Works

Ekso Bionics

Highlights of Existing Evidence: From the Lab

Laevo[™] (low-back support)^{1,2,3,4}

- Decreased low-back muscle activity and discomfort, increased endurance, reduced energy expenditure
- In static and dynamic tasks^{1,2,3,4}

SuitX[™] (low-back support)^{3,4}

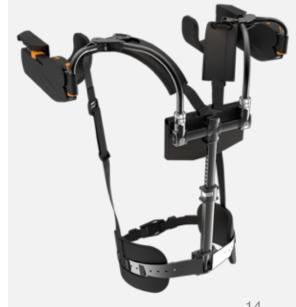
- Reduced low-based muscle activity
- Reduced muscle fatigue
- Reduced energy expenditure
- In static and dynamic tasks

Highlights of Existing Evidence: From the Lab

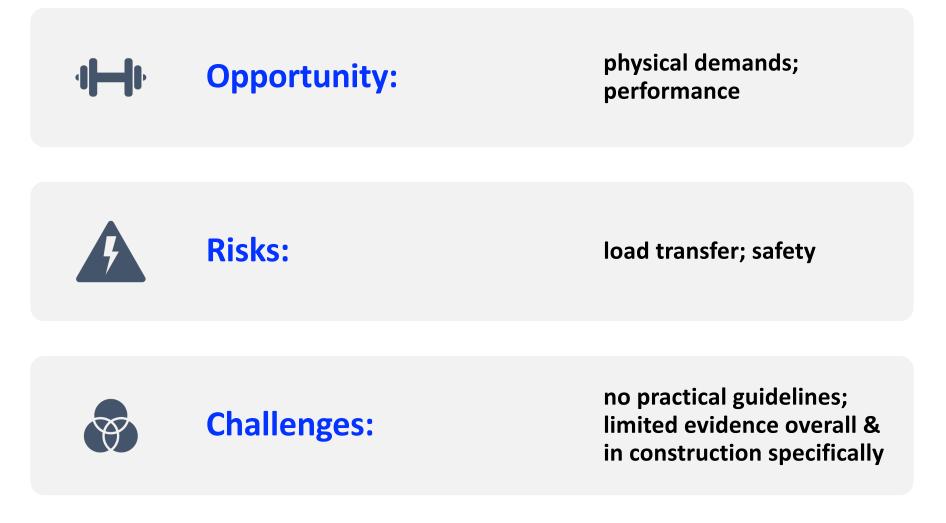
EksoBionics EksoVest[™]

(arm support)

 Decreased shoulder muscle activity¹ and spine loads² in simulated overhead work


SuitX[™] (arm support)³

- Decreased shoulder muscle activity
- Effective vs. ineffective support levels
- Preferred support varied between people and tasks


Highlights of Existing Evidence: From the Field

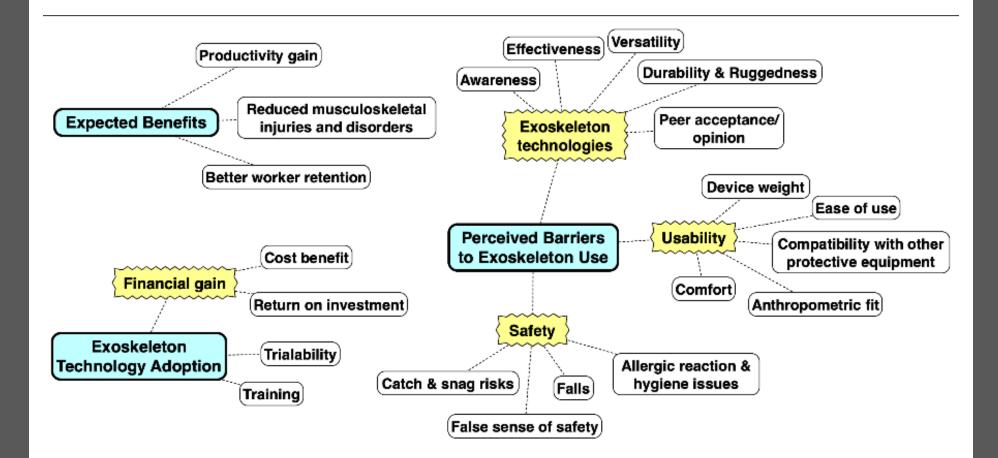
- Personal Lift Augmentation Device (PLAD) (low-back support)
 - Well received in automotive assembly, decreased muscle activity & perceived exertion¹
- Laevo[™] (low-back support)
 - Decreased low back discomfort (some increased chest discomfort) during static-bending tasks in auto assembly²
 - Increased muscle activity (trapezius) and discomfort (back, chest, thigh) in manufacturing³
 - Decreased back muscle activity in order picking⁴
- Levitate AirFrame (arm support)
 - Decreased shoulder muscle activity in manufacturing⁵
 - Decrease in shoulder pain among surgeons during/after an operation⁶

¹Graham et al. 2009; ²Hensel & Keil, 2019; ³Amandels et al. 2019; ⁴Motmans et al. 2019; ⁵Gillette & Stephenson, 2019; ⁶Liu et al. 2018

What are the potential benefits/limitations of different industrial exoskeleton technologies?

Evaluation of Exoskeletons in Construction

Understand	Relevant stakeholders' opinions on applications and
	promotors/barriers


Effectiveness, efficacy, and safety of different EXOs for tasksAssesswith high exposures, while considering task variability and
unique demands in construction

Implement

Provide evidence-based information on the effectiveness, efficacy, and safety of exoskeletons in construction; guidelines for how they should be selected, adopted, and used. Aim 1: Obtain input from construction industry stakeholders

Surveys (N=120) / Focus Group Interviews (N=30) will explore:

- Awareness and opinions of EXO use, including available technologies, usability, and safety
- Promoters of and barriers to EXO adoption
- Opinions regarding tasks or task characteristics (precision, complexity, dynamicity, worker posture, tool weight) that may benefit the most from EXOs
- Common measures for assessing productivity and work quality
- Information sources that are trusted for new construction technologies

Sunwook Kim, Albert Moore, Divya Srinivasan, Abiola Akanmu, Alan Barr, Carisa Harris-Adamson, David M. Rempel & Maury A. Nussbaum (2019) Potential of Exoskeleton Technologies to Enhance Safety, Health, and Performance in Construction: Industry Perspectives and Future Research Directions, IISE Transactions on Occupational Ergonomics and Human Factors, 7:3-4, 185-191, DOI: 10.1080/24725838.2018.1561557

Aim 1 Outcomes

Explore differences by:

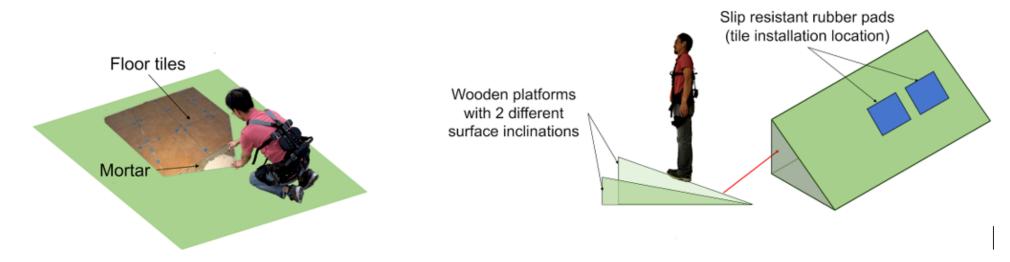
- Trade
- Region
- Company Size
- Type of EXO
- Employers versus Workers
- Age
- Experience Level

UC/VT CPWR Exo Project

Aim 2: Determine the efficacy of commerciallyavailable EXOs (ASEs and BSEs) The effects of EXOs during simulations of targeted work tasks that vary load, precision, and posture to determine the effects on:

- work performance,
- physical demands, and
- usability

Outcome Measures		
ility fety	Donning & Doffing	
Usabilit & Safety	Maneuverability in constricted space	
S 0	Single-leg jump landing	
Postural Control & Balance	Figure-eight walking (F8W)	
Postu	Stair/Ladder climbing & Other Physical Demand Activities	

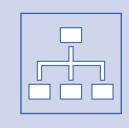


	Concrete Grinding	Tuck Point Grinding	Drywall Hanging (Drilling)
Posture	Overhead vs Forward Reach	Forward Reach	Overhead vs Forward Reach
Load/Tool	Heavy (4.1 kg/9 lbs)	Medium (2.9 kg/6.4 lbs)	Light (1.4 kg/3 lbs)
Precision	Low	High	Medium
Movement Speed	Low	Medium	High

Figure 4. Adjustable height ceiling and wall apparatus (at UCSF) that holds different materials (concrete, brick wall, dry wall) for tasks requiring forward reach and overhead postures.

	Floor tile installation	Roof tile installation
Working Posture	Kneeling	Kneeling and Stooped
<u> </u>		(2 inclinations)
Load	Light (6"x6" tile),	Light (0.9 kg/2 lb)
	Medium (12"x12")	Heavy (3.4 kg/7 lb)
Precision	Medium and High	Low
Movement Speed	Low	Medium and High

Outcomes		
- s	Metabolic demands	
Physical Demands	Normalized muscle activity	
Pł De	3D joint kinematics	
ility	Skin temperature	
Usability	User perception	
JCe	Productivity	
Performance	Quality of Work	
	Perceived Work Performance	



Aim 3. Assess the perceived safety, effectiveness, and acceptability of EXO use by construction workers in a realistic context. (YRs 3-4)

Develop EXO Implementation Guidelines

Type-Benefit

considering task characteristics and safety considerations

Subjective assessment of effectiveness on work performance, physical demand and usability Aim 4. Disseminate study findings nationwide (YRs 3-5)

construction contractors

trades

*

health and safety professionals

Next Steps

Please contact us at: <u>ucergonomics@gmail.com</u> <u>nussbaum@vt.edu</u> If you are interested in participating.

- Looking for construction companies of all sizes with workers from different trades to respond to a 30-45 minute survey
 - Via interview with researchers
 - Via smartphone link (English/Spanish)
- Looking for construction companies or trade unions to facilitate a 2-hour focus group where researchers can meet with 3-5 workers at a time
 - Roofing
 - Flooring
 - Concrete grinding
 - Tuckpoint grinding
 - Drywall installation

THANK YOU!

<u>www.ergo.berkeley.edu</u> <u>carisaharris@berkeley.edu</u>

https://oshrc.centers.vt.edu/ nussbaum@vt.edu

Research was supported by CPWR: The Center for Constructions Research and Training (CPWR) through Cooperative Agreement Number U60-OH009762, funded by the Centers for Disease Control and Prevention/NIOSH. Its contents are solely the responsibility of the authors and do not necessarily represent the official views of CPWR, NIOSH, CDC or DHHS

