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ABSTRACT 
Unmanned Aerial Systems (UASs), a.k.a. drones, are flying agents that operate under remote control 
without a pilot on board. One emerging technique for using UASs in the construction industry is applying 
photogrammetry methods to visual data acquired by the UAS. Within the last decade, researchers have 
heavily focused on developing computer vision techniques for automating various operations, including 
detecting job site hazards and safety-related issues and conducting automated and semi-automated safety 
inspections. These techniques are based on processing either images or videos, and civil infrastructure 
computer vision has been a well-established and well-studied area among the construction research 
community. The goal of this project was to use UASs as a data collection platform, combining the data with 
novel computer vision techniques to create an automated fall hazard detection and monitoring system. The 
specific objective was to investigate the practical implementation of UASs for monitoring guardrails near 
unprotected edges and openings. To achieve this objective, a real-time video feed of the construction site 
was collected using an UAS, and then an image-processing algorithm was developed and tested for 
guardrails detection from true-color images. This project adopted a case study approach to investigate the 
technical development of the hazard identification system and then its implementation and testing in a high-
rise construction project. The outcomes of the research illustrated that the proposed automated fall hazard 
recognition system could facilitate recognition of guardrails in high-rise construction projects. 

KEY RESEARCH FACTORS AND FINDINGS 
• This project proposed an image-processing algorithm for guardrails detection from images captured by 

an Unmanned Aerial System (UAS). 
• A three-step machine-learning pipeline was developed to detect guardrails from the UAS-captured 

images: (A) guardrail detection, (B) floor detection, and (C) space estimation. 
• Integrating the second step (floor detection) in the image-processing algorithm significantly enhanced 

its guardrail detection precision. 
• Including a cascade classifier (i.e. a machine-learning object detection algorithm used to identify 

objects in an image or video based on a binary pattern) with floor detection and guardrail spacing 
estimation achieved the best performance in terms of precision and recall metrics for guardrail 
identification. 

INTRODUCTION 
Falls remain the leading cause of fatalities in the construction industry (Gillen et al. 1997; Hinze et al. 2005, 
CPWR 2013, NSC 2015, OSHA 2017, Kang et al. 2017). In 2016, 384 out of 991 total deaths in construction 
(38.7%) were attributed to fall (OSHA 2017). The fatality rate from falls to a lower level in construction is 
eight times higher than the average fatality rate from falls in all industries; in particular, falls to a lower 
level account for 49% of all occupational fatalities (NSC 2015). In addition to their frequency, falls usually 
lead to severe injuries (Lipscomb et al. 2004) and require longer periods of recovery that result in significant 
medical costs (Janicak 1998). Therefore, falls have become a key area for intervention and prevention in 
construction (Rivara and Thompson 2000).  

By examining various dimensions of 9,141 fall accidents that occurred in the United States between 
1997 and 2012, Kang et al. (2017) found that the percentage of fall accidents has increased substantially 
and residential housing projects experienced a higher portion of fall accidents. Kang et al. (2017) showed 
that more than 80% of fall accidents occurred from a height of less than 9.1 m (30 ft), and only 11% of fall 
accident victims were properly equipped with fall protection. 

The risk of fatality due to fall accidents increases with the height of a building. Although the previous 
literature has emphasized the importance of safety controls, such as guardrails and personal protective 
measures (Tarrants 1980; Hinze 1997, Kang et al. 2017) or considering safety during the design of the 
facility (Gambatese et al. 2005), the backbone of any safety program is detecting and mitigating hazardous 
situations. Therefore, developing new means and methods to perform frequent and automated site 
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inspection is necessary to reduce the number of fall-to-a-lower-level accidents. Recent developments in 
Unmanned Aerial Systems (UASs) equipped with video cameras make it possible to identify hazards during 
construction operations, and project managers can take proper actions to mitigate safety risks, or workers 
exposed to unseen hazards can then receive warnings that facilitate their safety. 

Although frequency and quality of inspecting the conditions and safety behavior of workers on the site 
can be used as an indicator of safety performance (Jaselskis et al. 1995; Laitinen et al. 1999; Reese, 2001; 
Abudayyeh et al., 2006), several factors make it hard for safety managers to increase the number of safety 
inspections in high-rise buildings. First, the number of safety managers in each company is limited, and, 
they may be located hundreds of miles away from construction sites. Second, the large square footage of 
high-rise buildings also makes frequent inspections difficult. Therefore, finding ways to increase frequency 
of safety inspection and also to observe hard-to-reach areas would have a great impact in improving safety 
performance. 

This research project used UASs as the data collection platform, together with novel computer vision 
techniques, to create an automated fall hazard detection and monitoring system. The objective was to collect 
the video feed of the construction site using a UAS and then developing and testing an image 
processing/computer vison algorithm to identify fall hazards. In this study, we specifically explored an 
automated approach for guardrail detection from an RGB (red-green-blue) image. RGB images were used 
due to their true-color values that could make it possible to extract colors from the images using machine 
learning algorithms and then filter those images (or specific regions of the images) based on RGB values 
to identify a targeted object. This project first investigated the technical development of this system and 
then implemented and tested it in a high-rise construction project. 

RESEARCH BACKGROUND 
Unmanned Aerial Systems 
Unmanned Aerial Systems, a.k.a. drones, are flying agents that operate under remote control without a pilot 
onboard. UASs have already been applied in a wide range of construction engineering and management 
applications, including monitoring of structures (Rathinam et al., 2008), surveying (Siebert and Teizer, 
2014), bridge inspection (Ellenberg et al. 2016), material tracking (Hubbard et al. 2015), site monitoring 
(Wen and Kang, 2014), progress monitoring (Lin et al. 2015), and safety inspection (Irizarry et al., 2012, 
Gheisari & Esmaeili 2016 and de Melo et al. 2017).  

UASs have the potential to improve safety performance and can be used as a vehicle for a variety of 
other technologies. UASs can move faster than humans to inaccessible or unsafe areas of job sites. They 
can be equipped with various devices such as video cameras, sensors, radar, or communication hardware 
to transfer real-time data to safety managers (Gheisari & Esmaeili 2016, Gheisari & Esmaeili 2019). They 
can also perform tasks similar to those done by manned vehicles but more quickly, more safely, and at a 
lower cost (Gheisari and Irizarry, 2015). Irizarry et al. (2012) and Gheisari et al. (2014) conducted the 
earliest studies on using UASs for safety applications: a usability study and a heuristic evaluation of a small-
scale quadcopter equipped with a camera as a safety inspection tool on construction sites. The study 
ultimately proposed that UASs could be an ideal safety inspection assistant, providing a safety manager 
with real-time access to videos or images from a range of predefined paths and locations around the job 
site, as well as voice interaction with construction workers. Gheisari and Esmaeili (2019) have also 
conducted a recent survey study with safety managers about using UASs in various safety-related 
operations and the importance of using UASs to improve safety monitoring and control practices on site. 
That study (Gheisari & Esmaeili 2019) showed that safety managers considered work near an unprotected 
edge/opening one of the most important hazardous activities that UASs have great potential to improve 
(See Table 1). These unprotected edges and openings were the focus of this research, and we would study 
the use of UASs and novel computer vision techniques to identify guardrails protecting openings and edges. 
One emerging technique of using UASs is applying photogrammetry (explained below) methods to the 
visual data acquired by the UAS. 
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Table 1. Top 10 application areas of UASs to improve onsite safety monitoring and control 
practices (Adapted from Gheisari & Esmaeili 2019) 

 Hazardous Situation or Safety-Related Activity 
Effectiveness Frequency 

Importance 
Factor* Median Average 

Rating 
Median Average 

Rating 
1. Using boom vehicles/cranes in the proximity of 

overhead power lines 
5 4.30 4 3.80 16.31 

2. Working in the proximity of boom 
vehicles/cranes 

4 4.06 3 3.51 14.27 

3. Working near unprotected edges/openings 5 4.02 3 3.44 13.85 

4. Conducting post-accident investigations 4 3.77 4 3.64 13.69 

5. Inspecting for the proper use of fall-protection 
systems 

4 4.13 3 3.24 13.39 

6. Inspecting house keeping 4 3.87 3 3.43 13.29 

7. Working in the blind spots of heavy equipment 4 3.72 3 3.44 12.83 

8. Inspecting at-risk rigging operations 4 3.77 3 3.36 12.67 

9. Inspecting the requirements for ladders/scaffolds 3 3.47 2 3.00 10.40 

10. Working in an unprotected trench 4 3.45 3 2.95 10.18 
* Importance factor = Effectiveness × Frequency 

 
Photo/Videogrammetry 
Within the last decade, emerging digital imaging techniques as well as advances in computational capacities 
of computers and other processing units have enabled practitioners and researchers to capture high-
resolution digital images and videos of objects of interest and extract useful information by processing those 
visual datasets. Photogrammetry and videogrammetry (science of automatically processing photo/videos 
and extracting information regarding the scene) are now two well-established areas of practice and research. 
Due to recent advances in computer vision techniques, it is possible to take several pictures or videotape an 
object (or a larger scene) and automatically generate a virtual 3D model. This process is known as “3D 
Reconstruction” and the output will be in the form of thousands or millions of 3D points in the space, also 
known as “Point Cloud Data” or PCD. A sample of PCD for a building is presented in Figure 1. PCD 
contains 3D coordinates of points as well as color values for each point. These geometrical and color 
features can be used for extracting information from PCD such as automatically detecting objects of interest 
with certain geometric and color values, such as a cylindrical column. 3D points within the PCD that form 
a concrete column are clustered in the form of vertical cylinder (geometrical constraints) and possess certain 
gray color (color value).  

  
Figure 1: Sample of a generated PCD for a building (Rashidi et al. 2013) 
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In this project, existing algorithms for processing videos captured by UASs were improved to detect objects 
of interests (e.g., guardrails). Implementing and developing image processing/computer vison algorithms 
to solve a challenging problem in the area of construction safety (e.g., auto-detection of guardrails) is an 
innovative approach to handle a safety-related task on dynamic construction workplaces. In this study, we 
specifically used an automatic approach for guardrails detection from an RGB image. Figure 2 shows an 
example of a picture taken by a UAS of an under-construction high-rise building. The detected guardrails 
were annotated with red bounding boxes to denote their location. We developed a high “recall” rate process 
where ideally all the guardrails can be detected with a high precision. Such fully automated guardrail 
detection could be used as a valuable tool within the current fall assessment procedures. 
 

 

 
Figure 2: Visualization of the labeled bounding box of guardrails 

 
Safety Scope: Fall Protection and Guardrails 
A large number of studies have focused on introducing new injury prevention practices with emphasis on 
falls. Singh (2000) evaluated some innovative protection measures for fall accidents on low-rise roofs. He 
found that falls cannot be prevented by a single, global practice and continuous monitoring of potential fall 
hazards is of great importance. Since it is not feasible for safety managers to continuously monitor 
construction sites, safety researchers are highly interested in developing automated methods to inspect sites. 
In one important study, Navon and Kolton (2006, 2007) developed an algorithm to identify hazardous 
activities in a project schedule that may lead to fall accidents and to automatically monitor installation of 
guardrails. Although this method improved the ability of safety personnel to monitor fall hazards, having 
an as-built location-based measurement system of guardrails could be laborious. One recent technology 
applied in construction engineering applicable for detecting potential fall hazards is the use of UASs 
equipped with video cameras. However, no study has developed an algorithm to identify fall hazards 
drawing on UASs because of technical complexities in detecting hazards in a video. This study aimed to 
address this knowledge gap and complemented current practices by providing an active fall hazard 
identification technique. 
 
Related Preliminary Study  
In order to verify the applicability and determine the level of success of using UASs-based automated 
process for fall hazard identification, a pilot study was conducted by research team (Gheisari et al. 2018). 
Perry Yard construction training site at the Rinker School of Construction Management at the University 
of Florida campus was used as the test location of this experiment, and a full-size mock-up platform was 
built to test an algorithm developed by the research team (Figure 3-a). To evaluate the feasibility of the 
proposed fall hazard detection method, a quadcopter UAS platform was used to capture a three-and-a-half-
minute MP4 video of the built platform from various angles and orientations (Figure 3-b). The UAS was a 
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Phantom 2 Vision+, an electronic battery-powered quadcopter manufactured by DJI. This quadcopter 
carried a high-quality camera that shoots full HD videos at 1080p/30fps and photos at 14 megapixels. 
 

  
(a) Built test platform (b) The quadcopter UAS captures a video of the built platform 

Figure 3: The full-size mock-up test platform with guardrails and an opening 
 

As the next step, the proposed algorithm processed the collected videos, and the existing objects (e.g. 
guardrails) were detected (Figure 4). The algorithm developed in the pilot study was limited to the platform 
created in the lab, and further development was conducted to enhance its reliability in real construction 
environments. In this proposal, the research team worked on detecting guardrails in a real-world 
construction jobsite.  
 

 
Figure 4: Snapshots of the generated PCD 

 

RESEARCH OBJECTIVES  
This project investigated the practical implementation of UASs for monitoring fall hazards near unprotected 
edges and openings. Using UASs, the research team developed and implemented an automated fall hazard 
recognition system that facilitated safety engineers’ task of identifying guardrails in high-rise construction 
projects. There were two specific research objectives in this study: (1) Develop a UAS-based hazard 
identification algorithm with focus on guardrails and (2) implement and test the UAS-based guardrail 
recognition system in a real-world high-rise construction project.  

By focusing on mitigating risk of fall hazards, the results of the study directly supported NIOSH’s 
National Occupational Research Agenda (NORA) construction strategic Goal 1.0: Reduce Construction 
Worker fatalities and serious injuries caused by falls to a lower level. By using the outcomes of this study, 
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practitioners could expand their awareness of existing fall prevention and protection solutions by constantly 
monitoring their effectiveness. This outcome specifically addressed Research Goal 1.1.2: Develop and 
evaluate engineering interventions and guidelines to address the three fall protection gaps (e.g. unsafe 
guardrail systems). 
 

METHODS 
This study was a collaborative effort between the University of Florida, University of Utah, and George 
Mason University. A UAS-based fall hazard identification system was developed and evaluated to establish 
a benchmark for the use of unmannered aerial systems in identifying fall hazards in high-rise construction 
projects. 
 
Step I: Data Collection Using a UAS 
The automated process for fall hazard identification began with traversing the scene using the UAS and 
capturing a comprehensive video. The video process took place from various directions, orientations and 
angles to minimize occlusions and record as much detail as possible. A quadcopter recorded a series of 
videos of the guardrails of an under-construction high-rise building project (See Figure 5) using a 
combination of manual and semi-autonomous flight features (e.g. course lock, waypoints, and point-of-
interest). Under the FAA's Small UAS Rule (14 CFR part 107), UASs should not fly directly over people 
(U.S. Department of Transportation 2016). The research team had several UAS platforms and certified 
pilots to fly and record the required videos for the implementation phase of this project. The specific UAS 
platform that the research team used for this project was their DJI Phantom 4 PRO Quadcopter, an electronic 
battery-powered quadcopter manufactured by DJI (Figure 6). This quadcopter carries a high-quality camera 
that shoots 4K videos at 60fps and photos at 20 megapixels. 
 

  
Figure 5: A conceptual illustration of capturing videos of 

a high-rise construction projects using a quadcopter 
Figure 6: Phantom 4 PRO Quadcopter 

UAS 
 
Step II: Guardrail Detection Algorithm Development 
A three-step pipeline was developed to detect guardrails from the captured images. In the first step, a 
guardrail detection algorithm was trained to localize the candidate locations of poles supporting the 
guardrails. As images taken from the real world were used in this process, the detector was expected to 
generate a significant amount of false detections. So, additional constraints were introduced to filter out the 
false detections. Considering that the guardrails are located at different floors, a horizontal line detector 
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was applied to the image to locate general floors and remove the detections that were not in close proximity 
of the detected floors. Since the guardrails are installed by humans and there is an approximate normal 
distribution between neighboring guardrail poles, the space between them was estimated and used to find 
the most likely combination of their locations.  
 
1: Guardrail Detection 
The classic sliding-window approach was adopted in this phase. First, starting from the upper left window 
of the image, a window was slid through the whole image to collect candidate locations that are likely to 
contain a guardrail. Note that multi-scale windows were not used here due to significant amount of scale 
variation observed in building images. This made the sliding window approach more efficient. From each 
window, a histogram of oriented gradients (HOG) feature was extracted, which is one of the most efficient 
human-designed features for object detection problems and has already been demonstrated on pedestrian 
detection applications (Dalal et al. 2005). A trained classifier in the algorithm was used to decide if the 
window contains a guardrail. For each window, the classifier took its HOG feature, processed it and 
predicted a score. If the score was above a threshold, then this window was decided as a positive detection. 
Two specific classifiers were used in this phase: (a) cascade classifier and (b) linear SVM (support-vector 
machine) classifier. Finally, the NMS (non-maximum suppression) algorithm (Forsyth et al. 2002) was 
adopted to reduce the number of overlapping detections. Positive detections from the classifiers were 
collected, and the ones with the highest classification score were selected from a group of detections with 
overlapping area. The overlapping area was measured by an IOU (intersection over union) metric. IOU is 
the ratio of the overlap between areas A and B of the ground truth bounding box A and predicted bounding 
box B and their union. (Forsyth et al. 2002). 
 
(a) Cascade Classifier: a cascade classifier was trained specifically for guardrail detection. Previously, this 
classifier has been used for efficient face detection (Viola et al. 2001). During the training stage, guardrail 
labels were prepared for the training of the captured data. This classifier was trained to use a cascade of 
classifiers to efficiently process image regions for the presence of a target guardrail. Each stage in the 
cascade applied increasingly more complex binary classifiers, which allowed the algorithm to rapidly reject 
regions that did not contain the target. If the desired object was not found at any stage in the cascade, the 
detector rejected the region and processing was terminated. An off-the-shelf CascadeObjectDetector from 
MATLAB (Matlab 2019) was adopted for training purposes. 
 
(b) Linear SVM Classifier: a linear SVM was trained to classify the candidate windows into guardrail and 
background. The SVM model learned a binary boundary in the HOG feature space to do the classification. 
The research team learned that to find the best set of hyper parameters, parameter selection and cross 
validation should also be adopted. A grid search algorithm was applied for selecting the parameters. A 2D 
grid was built containing all the possible combinations of the values of parameters 𝐶𝐶 and 𝛾𝛾,  which were 
the weight of the constraint term and kernel parameter described in Chang et al. 2011. The block in the grid 
corresponded to one pair of parameter values. In practice, an exhaustive search was conducted on the whole 
parameter space. A linear SVM model was trained for each block of parameter values to evaluate its 
performance on the validation set. The SVM model with the best performance was selected as the final one. 
The libsvm library (Chang et al. 2011), a Library for Support Vector Machines, was used for training the 
SVM classifier. 
 
2: Floor Detection 
First, horizontal segments of the floor system were detected by identifying the vanishing points and the 
corresponding parallel lines. Because building images were used, there are many parallel horizontal lines 
in the image.  First, the horizontal segments were identified using the vanishing point with the largest group 
of parallel lines (See Figure 7). Next, the floors were localized in a large number of detected line segments. 
Since images from a real-world project were used in this phase, the segments were not usually consistent, 
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which led to having disconnected segments belong to the same horizontal lines. Instead of dealing with all 
the small line segments directly, the small segments were clustered into long ones by merging segments 
with similar intercept. Then the coverage of each clustered line segments was assessed on the x-axis and 
the maximum ones were considered as the detected floor. In practice, for an image of three floors of a 
building, the top 10 lines were picked as the detected floors. These detected floors were then used to filter 
out false positive detections. The number of false detections was reduced using a threshold that considered 
the distance of the bottom of a detected bounding box to the closest detected. A threshold of 10 pixels 
distance in an image was implemented for this assessment. This threshold was a function of image 
resolution but reflected the fact that detections more then 10 pixels above the detected floor were eliminated 
from the false positive count. 
 

 
Figure 7: Visualization of the detected horizontal line segments 

 
3: Space estimation 
First, a Gaussian Mixture Model (GMM) was used to estimate the space between neighboring guardrails in 
the training set (Duda et al. 2012). The space was computed as the center distance between neighboring 
bounding box annotations. Guardrails without neighbors were ignored in this process. Because images were 
taken from different viewpoints, the spaces were normalized through dividing them by the mean of the 
length of the detected floors before the distribution was estimated. The normalized distance was then 
summarized in a histogram. An expectation-maximization (EM) algorithm (Duda et al. 2012) was used to 
fit a Gaussian Mixture Model (GMM) of the histogram. At the expectation step of the EM algorithm, 
posterior probabilities of component memberships were computed. Then these posterior probabilities were 
used as weights to estimate the component means, covariance matrices, and mixing proportions by applying 
maximum likelihood. This was the maximization-step of the EM algorithm. In practice, the number of 
components is estimated to be three, meaning three normal distributions were found. Figure 8 shows the 
estimated distribution. Finally, a “space-ubiquity” table was built so that by providing a space value, the 
table could predict the corresponding of the space value across the whole training set. 

During the testing stage, given the group of bounding box detections, the goal was to find the 
combination of them with the maximum ubiquity. This goal was achieved by first computing the ubiquity 
value between every pair of detections through the space-ubiquity table. And then, dynamic programming 
was used to find the maximum combination. Note that in practice, the ubiquity value was reduced at each 
space by a certain threshold which made it negative for some spaces.  
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Figure 8: Visualization of the space distribution among the training data. The colorful bell curves 

are the approximations for the 3 components. 
 
Step III: Guardrail Detection Algorithm Evaluation in a Real-world Project 
The research team conducted a visit to a state-of-the-art, 16-floor tower that will serve as a 
patient care facility (Figure 9). They conducted multiple flights on site and captured over 55 
gigabytes worth of aerial data (videos and images) using a DJI Phantom 4 Pro and 4K resolution 
to ensure the best possible results for image processing and fall hazard identification (Figure 10).  
 

 
Figure 9: Data Collection on site: Construction Jobsite (left); Researchers conducting the flights 
(right) 
 
Multiple flights characterized by variations in flight conditions and settings (e.g., image 
percentage overlap, manual and autonomous navigation, variations in speed, proximity to 
buildings) were performed on the jobsite, covering almost all the facades of the facility. 
Although the flights captured the whole building, the research team focused on the upper part of 
the tower, where vital visual information regarding guardrails and openings were acquired for 
analysis.  
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Figure 10: UAS-captured 4K resolution images of the building façade 

 
Sixty-eight high-resolution RGB images were captured from the UAS collected videos. The sampling rate 
was about 100 frames per second to reduce the similarity between extracted images. The images were split 
into training and testing data following a 50:18 ratio. All the sampled images were labeled manually. 
Overall, 1158 guardrails were labeled in the training data and 416 ones were labeled in the testing data. 
 
A: Evaluating Guardrail Detection 
The previously discussed cascade classifier and a linear SVM were trained using the training data and their 
performance was then evaluated on the testing data using “Precision” and “Recall” metrics. Precision is the 
fraction of relevant instances among the retrieved instances, while recall is the fraction of the total amount 
of relevant instances that were actually retrieved (Forsyth et al. 2002). It is worth noting that the linear 
SVM (Figure 11) achieved a 10 percent advantage over the cascade classifier (Figure 12) on recall, which 
showed that it detected the majority the guardrails in the image (Table 1). However, its precision is also 
significantly lower. Comparatively, the cascade classifier achieved a balance between precision and recall. 
 

Table 1: Evaluation results of trained guardrail detectors  
                            Approach 
Metric Cascade Classifier Linear SVM 

Precision 0.1510 0.0438 
Recall 0.7077 0.8062 
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Figure 11: Visualizations of the guardrail detections using linear SVM 

 

 
Figure 12: Visualizations of the guardrail detections using the cascade classifier.  

 
B: Evaluating the Guardrail Detection + Floor Detection 
As previously discussed, the floors were detected on the test images and then the floor detection 
filtering was applied to the detected windows. It is worth noting that many false positive detections 
were removed after integrating the floor detection, and the precision of both the cascade classifier 
and linear SVM approaches almost doubled as a result. Figure 13 illustrates the effectiveness of 
the floor detection filtering on the linear SVM detection result. 
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Table 2: Evaluation results after applying the floor detection 

                            Approach 
Metric 

Cascade Classifier + 
Floor Detection 

Linear SVM + 
Floor Detection 

Precision 0.2531 0.0974 
Recall 0.7015 0.7908 

 

 
Figure 13: Visualization of the filtered false positive windows (denoted as green bounding boxes). 

White lines are the detected floors. 
 
C: Evaluating the Guardrail Detection + Floor Detection + Space Estimation 
Finally, space estimation, the last post-processing technique, was applied to achieve the best 
combination of guardrail detections. Table 3 demonstrates the result. Using the cascade classifier, 
the overall recall was around 62percent, and the precision was over 35 percent. If linear SVM 
detection were used, the precision was reduced 10 percent, but recall increased around two percent. 
It should be noted that the performance was not very good on a small set of testing images. In fact, 
after using cascade classifier on some of the testing images, there were over 80 percent recall and 
50 percent precision. Figure 14 is the illustration of the final results on two images. 
 

Table 3: Evaluation results after applying space estimation 
                            Approach 
Metric 

Cascade Classifier + Floor 
Detection + Space Estimation 

Linear SVM + Floor Detection 
+ Space Estimation 

Precision 0.3666 0.2680 
Recall 0.6215 0.6400 



13 
 

 

 
Figure 14: Final Detection Results on Two Images. The blue bounding boxes are the detected 

windows and the red ones are the ground truth labels. 
 

FINAL REMARKS 
In this study, a UAS-based image processing algorithm for guardrails detection from an RGB image was 
developed and tested in a real-world high-rise construction project. A three-step image processing pipeline 
of guardrail detection, floor detection, and space estimation was developed. In the guardrail detection step 
of the pipeline, two methods of cascade classifier and linear SVM classifier were used for guardrail 
detection purposes. Various combinations of the developed approaches were used to assess guardrail 
recognition in the captured images from a high-rise construction site (See Table 4). Considering the 
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‘Precision’ and then the ‘Recall’ metrics, the cascade classifier, with floor detection and guardrail spacing 
estimation achieved the best performance, as indicated in the Precision column. 
 

Table 4: Summary of evaluation results for all approaches 
                                                                                   Metric  
Approach Precision Recall 

Cascade Classifier 0.1510 0.7077 
Linear SVM 0.0438 0.8062 
Cascade Classifier + Floor Detection 0.2531 0.7015 
Linear SVM + Floor Detection 0.0974 0.7908 
Cascade Classifier + Floor Detection + Space Estimation 0.3666 0.6215 
Linear SVM + Floor Detection + Space Estimation 0.2680 0.6400 
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